

Event-Database
Architecture for

Computer Games

Event-Database Architecture for Computer Games proposes the frst explicit soft-
ware architecture for game development, answering the problem of building modern
Computer Games with little or no game design. An archetypal software production
process, based on this architecture, is also introduced.

This volume begins by describing the formal defnition of software production pro-
cesses in general and the production process of Computer Games in particular. It
introduces the two basic principles behind the software architecture that addresses
the communication and productivity problems of a degenerative production process.
It goes on to describe the archetypal software production process and outlines the
role that the Game Designers, Game Programmers, Game Artists, Sound Designers
and Game Testers play in that process.

This book will be of great interest to professional game developers involved in
management roles such as Technical Directors and Game Producers and technical
roles, such as Tools Programmers, UI Programmers, Gameplay Programmers and
Engineers, as well as students studying game development and programming.

Rodney Quaye is Senior Software Development Engineer in Test at Build A Rocket
Boy. He has worked in the Computer Games industry for over 16 years. He has
worked at several Games Studios including Sumo Digital, nDreams, Supermassive
Games, Traveller’s Tales, Hotgen, Oysterworld, Second Impact, Flaming Pumpkin,
Goldhawk Interactive, Jagex, Gusto Games, Criterion, Asylum Entertainment,
Codemasters and Deibus Studios. The famous titles he has worked on include
Burnout 2 and 3 for Criterion, LMA Manager for Codemasters, Runescape for
Jagex, Lego Worlds for Traveller’s Tales, and Everywhere for Build A Rocket Boy.

https://taylorandfrancis.com

Event-Database
Architecture for

Computer Games
Volume 1, Software Architecture and the

Software Production Process

Rodney Quaye

https://www.crcpress.com

Designed cover image: Shutterstock

First edition published 2026
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2026 Rodney Quaye

Reasonable efforts have been made to publish reliable data and information, but the author and publisher
cannot assume responsibility for the validity of all materials or the consequences of their use. The authors
and publishers have attempted to trace the copyright holders of all material reproduced in this publication and
apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright
material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or here-
after invented, including photocopying, microfilming, and recording, or in any information storage or
retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.
com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermis-
sions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

ISBN: 9781032820675 (hbk)
ISBN: 9781032818061 (pbk)
ISBN: 9781003502784 (ebk)

DOI: 10.1201/9781003502784

Typeset in Times
by KnowledgeWorks Global Ltd.

Access the Support Materials: www.routledge.com/9781032818061

https://www.copyright.com
https://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003502784
https://www.routledge.com/9781032818061

v

Contents
About the Author ...vii
Introduction ...ix

Chapter 1 The Problem ...1

1.1 The Software Evolution Process ..5
1.2 The Effect on Software..8
1.3 The Effect on Language .. 11
1.4 The Effect on Credibility ... 18
1.5 The Use of NDAs to Give the Process Credibility20
1.6 The Use of Secrecy and Mystery to Give the Process

Credibility .. 21
1.7 The Use of Inscrutability to Give the Process Credibility23
1.8 The Mythical Man Month ...25
1.9 The Use of the Promise of Rapid Feedback to give the

Process Credibility ..26
1.10 The Decline and Fall of Credibility ..27
1.11 The Post Mortem ...29

Chapter 2 The Solution ... 37

Chapter 3 The Software Architecture ... 42

3.1 Events Host .. 42
3.2 Database Host .. 47
3.3 Objects Host ..50
3.4 Graphics Host ..54
3.5 Physics Host ... 63
3.6 Sounds Host ...65
3.7 Game Controllers Host ..69
3.8 Central Host ...77
3.9 The Network of the Architecture .. 79

3.9.1 Single User Monolithic Form 82
3.9.2 Multi-User Distributed Client Server Form 86
3.9.3 Multi-User Distributed Peer To Peer Form 91

Chapter 4 The Software Production Process ..98

4.1 Step 1: Feasibility Study/Vertical Slice 106
4.1.1 Designing the Test .. 107
4.1.2 Designing the Software .. 119

vi Contents

4.1.3 Designing the Database .. 121
4.1.4 Background Research ... 132
4.1.5 Documentation Tools ... 133
4.1.6 Programming Tools .. 134
4.1.7 Software Libraries .. 135
4.1.8 Art Tools ... 136
4.1.9 Database Tools ... 137
4.1.10 Open Data Format .. 138
4.1.11 Sound Tools .. 144
4.1.12 Running the Test .. 145
4.1.13 Prognosis from the Test .. 149

4.2 Step 2: Game Design ... 150
4.3 Step 3: Technical Design ... 150

4.3.1 Rules for Generating the System of Events 150
4.3.2 Rules for Generating the System of Game

Objects ..151
4.3.3 Application: Testing ... 152
4.3.4 Application: Game Play – Escaping a Prison 157
4.3.5 Application: Game Play – Picking a Rose Bush 179

4.4 Step 4: Data Design ... 184
4.5 Step 5: Tools Design .. 185

Chapter 5 Limitations or Criteria for Use ... 191

5.1 Complete Game Design Criterion ... 191
5.2 Incomplete Game Design Criterion 193
5.3 Complete Data Design Criterion ...203
5.4 Incomplete Data Design Criterion ...204

Chapter 6 Glossary ..206

Index .. 267

vii

About the Author
Rodney Quaye is Senior Programmer who has worked in the Computer Games industry
for over 16 years. He was born in the UK but grew up in his fatherland, Ghana, attend-
ing primary school there. He returned to the UK to attend secondary school. He grew
up playing Computer Games at school and university but never thought of it as a career.
He graduated from the University of Warwick with a Bachelor of Engineering degree
in Computer Systems Engineering in 1993. He went to work as a programmer frst on
medical information systems for hospitals and then market analysis systems, mainly
for car manufacturers. He then had a near-death experience which gave him a spiritual
awakening. He refected on his life and realised that his heart was not in his work. He
felt God was calling him back to his frst love, Computer Games. So he started a career
in that industry in 1999, working at several Games Studios including Sumo Digital,
nDreams, Supermassive Games, Traveller’s Tales, Hotgen, Oysterworld, Second Impact,
Flaming Pumpkin, Goldhawk Interactive, Jagex, Gusto Games, Criterion, Asylum
Entertainment, Codemasters and Deibus Studios. The famous titles he has worked on
include Burnout 2 and 3 for Criterion, LMA Manager for Codemasters, Runescape for
Jagex and Lego Worlds for Traveller’s Tales. He wrote this book to provide a standard
documented software architecture for making Computer Games.

https://taylorandfrancis.com

ix

Introduction
In this volume in this series, Event-Database Architecture for Computer Games:
Volume 1, Software Architecture and the Software Production Process, the prob-
lem of building modern Computer Games with little or no game design will be intro-
duced, along with a software architecture for solving this problem.

An archetypal software production process, based on this architecture, will also
be explained.

https://taylorandfrancis.com

1

1 The Problem

The classic software production life cycle1 is meant to begin with the analysis of
the problem the software would address, followed by the drafting of its manual, its
design and a plan to test it. Following these initial theoretical phases are two more
practical ones. These include the implementation of the design of the software, and
the testing of that software, based on the plan drawn up earlier, respectively.

The analysis of the problem would include a detailed description of the require-
ments which the software will meet. These would be either drawn up in consultation
with a customer, for whom the software would be written for. Or these would be
drawn up after market research had been carried out on a consumer market. The
resultant document, drawn up from this analysis, is known as the User Specifcation.
This document acts as a basis for the next phase; that is the drafting of the manual
that would accompany the software.

On some occasions, however, before this phase, the analysis may also act as a
basis for the study of the feasibility of the software. This would assess the computer
hardware it was for, the time and the tools available to make it. And the results of this
study would be included in the User Specifcation.

On other occasions, this feasibility study may be done after the software has been
designed, to give a more accurate study. The software design2 includes a breakdown
of the software modules,3 the software data,4 the software library5 and other tools
that would be used to meet the requirements. If the feasibility study were conducted
after the software design, then it would also be included in that design. The software
design acts as a basis for the next phase that is the drafting of the initial plan to test
the software.

After the plan for testing the software had been drafted, the tools chosen in the
software design would be used to build the components of the software and assem-
ble these together. Finally, the result would be tested against the software design,
according to the plan.

There are many variations on this process. Some repeat the cycle, beginning with
the analysis and ending with the testing, several times. Others repeat only some of
the phases of the cycle several times. Some repeat the cycle to produce each of the
software components. But if you at least understand the classic software production
life cycle, you can understand the different phases of these other processes.

The production of a Computer Game too follows this basic pattern. That is, it
begins with an analysis of the requirements of the software. It begins with a general
game design.6 This is equivalent to a User Specifcation. The document includes a
description of the goals of the game, the different stages, the goal of each stage and
the progression through the stages. It includes a description of the different items in
each stage, how these appear and behave. It also includes a description of the User
Interface7 and how this would be used to interact with the items in each stage, to
progress through the game. Furthermore, the analysis typically includes a study of

DOI: 10.1201/9781003502784-1

https://doi.org/10.1201/9781003502784-1

2 Event-Database Architecture for Computer Games

the feasibility of the software. This involves a small sample of the software being
written and built, to give a practical demonstration of a short, but important, part of
the game.

After the game design, a second design is written known as a technical design.8

This includes a description of what data would be needed to build the game, and
the tools required to create or manage that data. It also includes a breakdown of the
software modules (or game modules9), and the software library (or game-engine10)
needed to implement the game design, using that data.

Following the technical design, the various staff responsible for building the
game set about getting or creating the data, the tools, the game modules and the
game-engine. They assemble these together to build the game. After that, they draw
up a plan to test the result against the original design. They execute that plan. And,
fnally, they draw up a User Manual11 for the game.

The only major difference between this production process and the classic
software production life cycle is cosmetic. Namely, all the phases of the soft-
ware production life cycle, which occur throughout the process, fall into three
broader phases known as Pre-production, Production and QA.12 Each of these
phases incorporates two or more phases of the software production life cycle.
Pre-production incorporates four phases: the analysis of the requirements, the
documentation of these in the User Specifcation, the drafting of the software
design and the study of its feasibility. Production incorporates four phases: the
re-analysis of the requirements, the re-drafting of the User Specifcation, the re-
drafting of the software design and the implementation of that design. QA incor-
porates three phases: the drafting of the manual for the software, the planning
of the fnal test and the execution of that plan. Apart from this difference, the
process begins with a plan, and it follows with the implementation of that plan;
just like the classic software production life cycle. There is a diagram showing
the steps of the classic software production life cycle in Figure 1.1. There is a
diagram showing the steps of the production process of Computer Games in
Figure 1.2.

At least, this is what is meant to happen. But, instead, what actually does hap-
pen is something else. The desire to get funding for the Computer Game distorts
the entire production process. The analysis of the game, which normally proceeds
the process, is hastily put together. The game design (i.e. the User Specifcation) is
anything but specifc. It is vague and incomplete. It contains just enough highlights
to sell the game to whoever is funding the project.

The fnancial backers of the project may just want to see a summary of the details
of the game. Or they may want to reserve the right to change aspects of it, at a
later date. These options do not stop the Software Developer13 from completing the
game design, with details which may later be changed. Nor do these options pre-
vent the Developer from building software, to support this completed game design,
and trying to re-use the tools later on, when the game design had changed. Nor do
these options stop the Developer from presenting a summary of this completed game
design to the fnancial backers. However, it is not in the Software Developer’s inter-
est to commit to work which they may have to change later on. It is less expense for
them to leave that work out completely.

3 The Problem

FIGURE 1.1 The classic software production process.

So just like the User Specifcation, the Software Developer similarly neglects the
feasibility study. They rush it through with optimistic speculations. It invariably pro-
duces the positive result that the Software Developer requires to secure the funding.
The software that is written to demonstrate the highlights of the game has just one
aim. And this is the sale of the game to the fnancial backer. The Software Developer
has no intention to re-use it. And the direct result, of the rush through this initial
phase, is that the rest of the game design has to be made up after the technical design
has been written. That is, the completion of the game design has to occur during the
building and the assembly of the software components.

But before that phase, the technical design is written on the basis of the incom-
plete game design. And it too is driven by the desire to secure funding. Thus, the
choice of any game-engine, in the technical design, is tactless. The game-engine is
chosen for its ability to help build games on many different platforms14; especially

4 Event-Database Architecture for Computer Games

FIGURE 1.2 The production process of the Computer Games industry.

the latest platform. This in turn helps promote the project to any fnancial backers
interested in new lucrative markets.

Likewise, any tool that could be used to edit elements of the game, such as a game-
editor,15 is chosen for its ability to seemingly provide the project with options. The
more that it appears the project could handle changes in the game design, the less
risk it appears to have for any fnancial investor. Neither the game-engine, the game-
editor, nor any other tool would be chosen for its ability to meet the requirements of
the game design. Since these requirements were not completed anyway, all of the
choices in the technical design are makeshift ones. And these are meant to be par-
tially, if not completely, discarded later on, during the rest of the production process.

After the technical design has been written, the production of the software
components begin. But the effects of the absence of so many provisions, in the

5 The Problem

game design and technical design, on the software data, tools and modules are
disastrous. When it comes to building and assembling the software components,
all of these are continuously being rewritten, as informal changes are being made
to the game design. Each change, and subsequent pass through the software pro-
duction life cycle, is dealt with less rigorously than the preceding one. And the
production process rapidly descends into a reactionary, instinctive and primeval
state.

Eventually, the time between each informal proposal for some change, and its
appearance in the game, is a matter of hours, minutes and seconds. The Software
Developer completely neglects the game design and technical design. The ad hoc
process that emerges from this descent is known as the Software Evolution Process.16

1.1 THE SOFTWARE EVOLUTION PROCESS

Although they stumble into it every time, most Software Developers do not recognise
the Software Evolution Process. They merely react to it when it occurs. But others do
recognise it. And they actually advocate it to their fnancial backers as a sound, if not
scientifc, method for developing the incomplete game designs which they produce.
To them, it represents a practical application17 of the theory of Biological Evolution,
to the problem of quickly responding to the wishes of their fnancial backers, and
their changes to the game design.

This is despite the fact that, in many ways, the Software Evolution Process
does not bear any resemblance to the theory of Biological Evolution. The theory
of Biological Evolution requires small mutations in animals, which allow the ani-
mals to slowly adapt to the environment. The Software Evolution Process, on the
other hand, involves coping with massive, traumatic changes in a game design, and
getting an instant response from the production process. The theory of Biological
Evolution requires a period of time during which two or more mutations live along-
side each other, until the environment eliminates one. Indeed, some mutations may
continue and proliferate into different species. In contrast, the Software Evolution
Process ensures that one version of a game quickly supersedes another. And that
at no time are there two or more versions in production. The theory of Biological
Evolution involves a slow, steady process of change which always leads to progress.
The Software Evolution Process, however, involves a fast, volatile process of change,
which leads just as much to progress, as it does to regress.

Very few aspects of the Software Evolution Process resemble the theory of
Biological Evolution. And those that do are not commendable. The theory of
Biological Evolution involves a long, open-ended process,18 which develops over
millions and billions of years. Similarly, the Software Evolution Process feels just
as long, it is just as ageing and just as pointless. The only difference being that the
Software Evolution Process manages to cram the entire exhausting experience
into a few months or years. The theory of Biological Evolution is hard to prove,
because of the vast time frame that it requires. You can observe the individual
mechanics of it (the mutations, how changes of environment affect the survival
of animals). But you will not live long enough to observe these working progres-
sively in nature. Similarly, the Software Evolution Process is hard to prove or

6 Event-Database Architecture for Computer Games

disprove. Although you can quickly observe some of the effects on a game, that
arises from each informal change that is made, you have no idea what the long-
term effects will be.

The reason for this is that the Software Evolution Process relies on overlapping
phases of the software production life cycle, and ignoring documentation, to quickly
react to changes. It does not only overlap the game design, with the building, of
the software. It also overlaps the feasibility, the technical design and testing of the
software too. While one group is proposing informal changes to the game design,
another is assessing the feasibility of a different set of changes, another is changing
the technical design, another is building components of the software and another is
testing a previous set of changes. This makes the Software Evolution Process both
very complex, and at the same time unscrutable.

Yet this practice has become so commonplace in the Computer Games indus-
try, it has become formalised. Such that, for example, prospective Game Artists,
who attended formal interviews at Software Developers, have been expected to have
some prior experience designing and running a distinct sub-process, during produc-
tion process, known as an Art Pipeline.19 The phases of which would run parallel
to the phases of the software production life cycle, that the rest of the staff would
follow. And product of which would be all the special effects, the characters, the
animations, the locations, the menus and other graphical items in the game. In other
words, through the Art Pipeline, the Artists have been expected to design and build
all of these components of the User Interface, at the same time the rest of the game
was being developed by other staff.

Likewise prospective Game Programmers known as Build Engineers who attend
formal interviews at Software Developers have been expected to have had prior
experience running a distinct sub-process known as the Build Pipeline.20 Again the
phases of this would run parallel to the phases of the software production life cycle
that the rest of the staff would follow. And the product of which is the latest version
of the game built by an automated system, on a daily or hourly basis. To ensure that
there were no errors building and testing the game after changes had been intro-
duced to the game design. These changes occur at a rapid rate, 80–100 changes every
day, 3–4 changes every hour and 1 change in every 15 minutes.

Nevertheless, the effect of having so many sub-processes, such as the Art Pipeline
and Build Pipeline, running concurrently in the Software Evolution Process, offers
the Software Developer an advantage. Although this makes the process very com-
plex, this also makes it unscrutable. And this is why some Software Developers
advocate it to their fnancial backers: not for its responsiveness, but its inscrutability.

On the one hand, the Software Developer advocates the expediency of the
Software Evolution Process, for rapidly coping with changes to a game design, when
production begins. On the other hand, after errors have occurred, the Developer
falls back on the complexity (and inscrutability) of the process to account for these
errors. On the one hand, the Developer claims to appreciate the need to address
any demands, from the fnancial backers, for changes to the game design. On the
other hand, the Developer has no qualms about adopting a process which neither
they, nor the investors, can understand. How can they appreciate the suitability of
a process which seems to begin well enough, but they always lose track of? Their

7 The Problem

lack of understanding is self-evident when you ask them to defne what the Software
Evolution Process is.

No two Software Developers have exactly the same idea of what the Software
Evolution Process is. The degree to which they overlap the phases of the software
production life cycle, which phases they repeat, which phases they leave out, and the
number of sub-process running in parallel within the Software Evolution Process
differs. The same Developer never uses the same Software Evolution Process twice.
This is consistent with the inscrutability of the Process. When it ends, the Process is
inscrutable and the Developer cannot analyse the phases of the Process. They can-
not identify which phases were successful and which phases failed. Therefore they
cannot identify which phases to repeat and which phases not to repeat. The Process
is inherently ad hoc. It changes as the need arises and is therefore unrepeatable. The
Software Evolution Process is phenomenon which the Developers fnd expedient but
mysterious.

But if they looked backed into its history, they would fnd out that there was no
great mystery about its origins. The Software Evolution Process is older than the
Software industry, and much older than the Computer Games industry. It was the
process which would have been used to produce the frst-ever piece of software.
Back then as now, the two characteristics of a Software Evolution Process were
meant to be in theory, frstly, that it slowly evolves and grows software over time.
And secondly that the basis of this evolution was feedback from the software user.
But, in practice, the process has never managed to evolve software without degener-
ating.21 Nor has feedback from the software users22 played any part in it. Instead the
feedback has come from staff involved in the software production process who act as
proxies for software users. In the Computer Games industry, the Game Producers,23

Game Designers,24 Game Testers25 and fnancial backers have traditionally taken up
this role upon themselves. The fnancial backers especially provide the initial feed-
back which secures the investment when the production of the game begins. And
this feedback, from the fnancial backers, continues to secure the fnancing from the
beginning to the just before the end of the process.

So the characteristics of a Software Evolution Process, such as they are, have
always been external characteristics related to why the process was being used, not
internal characteristics related to how it was being conducted. That is, frstly, the
process was being used because of the absence of an initial plan to build the soft-
ware, in this case a Computer Game, before the date it was scheduled to be released.
And the need to fll the void due to this absence. Secondly, the process was being
used because of the expediency of overlapping some phases of the software produc-
tion life cycle (e.g. feasibility study, game design, technical design, implementation
and so on) and omitting others (e.g. a User Manual and a test plan). To speed up the
production process and produce visible results as soon as possible. And reassure the
fnancial backers and the rest of the staff.

For the Software Evolution Process is only a default process. It is the process
which someone, who has never made a Computer Game before, would use to produce
one. It is the process which any Software Developers would have to adopt, regardless
of their experience or knowledge, in the absence of any planned approach to build a
Computer Game. It flls the gap between the lack of a decision about a game design

8 Event-Database Architecture for Computer Games

and the fnal product. This is a gap which those Software Developers who advocate
the process hope will be very long. So long that, at the end of the process, no one will
remember or even care about the beginning. Any process which falls into this gap,
and is mutable, qualifes as a Software Evolution Process.

None of the Software Developers who espouse the virtues of the Software
Evolution Process, to their fnancial backers, would go into its effects in detail. For
this would be invariably damaging. The process repeatedly destroys any defnition
which it acquires. With each change introduced into the game design, the process
itself mutates. And the phases of the process which overlap, how much these over-
lap, the phases left out and the number of sub-processes running within the process
changes. These mutations destroy the defnition within many different parts of the
project. Not least amongst these are the defnitions within the software itself.

1.2 THE EFFECT ON SOFTWARE

The damage the mutating process does to the defnition within the software is criti-
cal. The game modules and game-engine pull all the resources together to build the
game. The importance of these two pieces of software infates, during the Software
Evolution Process. For these are responsible for the only remotely comprehensive
documentation, which is kept up to date. Namely, the computer fles, written by
the Game Programmers,26 which they use to build the game modules and game-
engine. These fles are only comprehensible to the Programmers. And the Game
Producers and Designers rely on the translations of these fles, by the Programmers,
to understand the current state of the software. They also rely on feedback, from this
software, to make up the rest of the game design. But although the game modules
and game-engine, like all computer programs, are written to cope with well-defned
behaviours, the Software Evolution Process destroys any defnitions these acquire as
it mutates. Instead, during the process, the Producers and Designers like to think in
terms of events, which are infnitely interchangeable.

When an event A happens, event B should follow it. Or event B should follow a
set time after A. Or C should happen the same time as A. For example, in the context
of a game based on managing football clubs, event A may be the manager of a club
fning a player for misconduct. Event B may be an article appearing in a newspaper,
speculating about the transfer of a player from one club to another. And event C may
be a request from that player, to the manager of the club, to be transferred.

In the context of a game based on racing cars, event A may be the start of a race.
Event B may be a car revving up its engine. And event C may be the sound of a crowd
cheering.

Some of these events may already be defned in one context and produced by
the game-engine or the game modules. Others may not even exist and may just be a
coincidence of different features added to the game.

For example, in the game based on football just mentioned, the article that would
appear in the newspapers may only be originally defned in the context of the day
after a match, involving a football club. And the text of the article presumed a match
had just been played and was merely meant to be complimenting a football player’s
good performance in that match. It was never meant to be a response to that player

9 The Problem

being fned by the club’s manager. Nor was it meant to be a prelude to the player
requesting a transfer because of such a fne.

Until that is, one day, through a coincidence, a Game Producer or Game Designer
happened to notice an article appear in the newspapers, complimenting a football
player’s performance after a match, while casually playing the Computer Game. And
coincidentally they subsequently noticed that another player from the same match
had been sent off for violent conduct. From these two coincidences the Producer or
Designer has an epiphany. They presume that the articles in the newspapers were
responding to what was happening in the football match. And that this mechanic
could be extended to make the articles also respond to what was happening at the
football club. Whenever a player was disgruntled with the club’s manager for one
reason or another, at any point in time in a football season.

So the Producer or Designer immediately decide, that same day, to change the
game design and add this feature. Even though this mechanic or relationship between
the events on the football match and the newspaper articles was incidental and did
not really exist. Even though, in the original context, the newspaper articles were
only meant to compliment one football player’s good performance in a match and
only appear one day after that match.

Another example, in the game based on racing cars, would be the sound of a car
revving up its engine. Originally, this sound may just be a coincidence to do with
the mechanics of the car. It may just be a coincidence of the motors accelerating, in
a high gear, and the clutch being disengaged after some accident, which a Producer
or Designer happened to notice. If the car had not been damaged, then it would not
be making that sound. Neither was it the intention for this to be heard at the start of a
race. Since the clutch would presumably not be damaged. And it would be impracti-
cal to get a quick start with it manually disengaged, and the motors revving in a high
gear.

However, when the Producer or Designer noticed this sound, they had an epiph-
any. What if this sound could be heard at the start of the race? What if all of the
engines at the start were making this sound on the start grid? It would really build up
the tension and get the players excited.

So again the Producer or Designer immediately decide, that same day, to change
the game design and add this feature. Even though this relationship between the
sound of the motors revving after an accident and the sound the cars made at the start
of a race was incidental and did not really exist. Even though, in the original context,
this sound was only generated by the game-engine as it tried to simulate the physics
of a car after a crash.

When the Producers or Designers see an event in the game, they presume that it
can organically evolve. That event can be taken from one context and put in another.
Or they presume it can be extended or modifed slightly. When, in fact, that event
does not really exist and is a coincidence of two or more other events, or that event
has already been tightly coupled within a well-defned behaviour. Thus, the accumu-
lative effect of each daily change to the game design, and subsequent modifcation
of the software, during the Software Evolution Process, after the Game Producers,
Game Designers and Game Testers play the game and give feedback, beginning with
the initial game design, is a slow and steady a loss of defnition in the software.

10 Event-Database Architecture for Computer Games

Also during the Software Evolution Process, the features which they add to
the game design, after they give feedback, often overlap. But these overlaps do not
become apparent until much later on, during production process. Since there is little
or no analysis of the product at the beginning. These overlaps only emerge as techni-
cal problems, which occur when writing the game modules, or building the game, or
when testing the software at the end of production.

For example, when the manager of a football club wins their frst match in a sea-
son, a Game Producer, working with one group of staff, may propose that a unique
article should appear in the media. The sports journalist should make sarcastic com-
ments about the surprise victory for the newly appointed, previously unheard of,
manager; that is the player of the Computer Game. And thus tease that player who
takes over the role of a football manager, when the game begins, to make him or her
relax. But a Game Designer, working simultaneously, with a completely different
group of staff, may propose shortly afterward, that the football manager should also
receive an article in the media whenever they win a trophy. And this article should
congratulate and praise the manager for the club’s achievement.

Now suppose the game follows the football seasons in many countries. And in
some countries the frst match is the fnal of a competition. This match acts as a
grand opening, or curtain raiser, to the coming football season. In such a season,
both proposals, from the Game Producer and Designer, overlap and produce a con-
tradiction. On the one hand, the manager who won the frst match would receive con-
descending remarks, from journalists, for a lack of experience. On the other hand, on
the same day, the manager would also receive praise, from journalists, for winning a
competition. This contradiction would only become apparent when either the game
modules were being written and built, or the game was being tested much later on.

When the contradiction emerges, typically in the Software Evolution Process, this
does not cause a re-analysis of the product. More so if it emerges a long time after the
production begins, especially towards the end; during the nominal QA phase of the pro-
duction process or the testing of the game. At this late stage, the authors of both propos-
als to change features of the game design tend to defend their choice and are reluctant to
drop their proposals for someone else’s. The Game Producers, Designers and other staff
who added these informal changes to the game design view such actions as a waste of
their time and effort: which it is. And, of course, there is no written comprehensive game
design to help resolve the issue. So the compromise is usually to somehow keep both pro-
posals. This is done by either giving a higher priority to one proposal over the other, dur-
ing some periods of the game, and swapping the priorities during other periods. Or this
is done by randomly choosing between the two proposals when they overlap during the
game. Or this is done by giving a higher weighting of one proposal over another, during
this random choice. So that it always occurs more frequently in the game than the other.

Thus the effect of the overlapping features of a game, which emerge late during
the Software Evolution Process, is a loss of certainty. A feature which appears fre-
quently at the beginning of production can suddenly seemingly disappear. And the
staff cannot be certain whether that feature is missing either because of an error. Or
whether it is missing because it had been given a lower priority than another feature.
Or whether it is missing because it had been limited to certain periods of the game.
Or whether it had been dropped all together.

11 The Problem

1.3 THE EFFECT ON LANGUAGE

Nevertheless, even the loss of certainty amongst the staff, and the loss of defnition,
within the game modules and engine, is merely a symptom of the main effect of
the mutations, of the Software Evolution Process. The main effect is the confusing
language which those who follow it use. This stems from the fact that, as the game
design changes, the Game data loses its defnition. In the beginning, some of that
data would have been well-documented in the initial game design and technical
design. But as time passes, the use of some of the data becomes more extensive or,
in other cases, very limited. The description of the data does not keep up with these
changes. So the quality of the description begins to vary quite rapidly.

This quality of each description depends on when that piece of data was intro-
duced. Those descriptions written at the beginning of the process would be more
accurate than those written towards the end. The quality of the descriptions also
depends on how quickly certain changes were required. And it depends on the group
who made these changes and their knowledge of the history of the process.

The varying of the quality of the description, of the Game data, affects the game
modules and the game-engine as well. If any data was well-defned and described, it
would be easy to understand any software module which used that data. Even if the
module were not well-documented, from the knowledge of the data that it used, and
the purpose of the module, you could deduce how it functioned. But if the data was
not well-defned, then this would not be possible.

Therefore the effect, of the poorly defned Game data on the game modules and
game-engine, in a Software Evolution Process, is disastrous. The computer fles, writ-
ten by the Game Programmers, which uses the Game data to build this software, grow
more and more mysterious. Eventually it becomes as much of a mystery to them, as
the Software Evolution Process is to the Software Developer. Even the Abstract data
(i.e. internal data) which they produce feels the effect of the lack of defnition, of the
Game data. The great majority of different types of data, which the Programmers use
to write the software, are Abstract data. But these are merely derivatives of the general,
Game data: these all share some relationship with Game data. And when the Game
data has been poorly defned, the Abstract data also lack defnition.

If the Game data were well-defned, then it would give the Game Programmers,
who make up the Abstract data, a language to describe themselves. But when there is
no language, the quality of description of the Abstract data varies from Programmer
to Programmer. Depending on the extent of each one’s knowledge, each Programmer
makes up a name to describe each data. Rarely, some of them make an attempt
to include additional explanations for the data. In general, however, most of them
realise that this is futile, in light of the changing game design, and they do not bother.
They rely solely on the single name they give each piece of data to describe it. But
these names are arbitrary.

Since the Game data does not provide the Programmers with any language to
describe the Abstract data, they reach for the nearest thing at hand. They use the
very obscure, esoteric language that comes from either the various game modules
or the game-engine, written by other Programmers. Or they use the language from
their education, the latest technical articles they have read, or the tools they see

12 Event-Database Architecture for Computer Games

around them. Or they use the language from the last game which they have played.
They do not use a natural language that comes from the game design.

This same phenomenon repeats itself, simultaneously, in the other contingents,
amongst the staff following the Software Evolution Process. But each occurrence of
the phenomenon produces subtly different results. All the staff who produce the Game
data, which the Programmers use, develop their own esoteric language. The Game
Designers, the Game Artists27 and the Sound Designers28 all make up arbitrary names
to describe the data they produce. And, later on, towards the end of the process, the
Game Testers too wade in with their own language. But the esoteric language of each
of these contingents differs slightly from the Programmers’, and from each other. The
differences arise from the fact that each contingent does not share the same educa-
tion, the same background, technical interests, or tools. Neither do they play the same
games. Thus the combined effect, of each of these contingents, using all these lan-
guages, to communicate in a Software Evolution Process, is like the Tower of Babel.29

In biblical times, in the place which later became known as Babylon, man
attempted to construct a tower to reach the heavens. But God stopped the construc-
tion of the Tower of Babel by causing all the builders to speak different languages.
Likewise, in modern times, in the process which is known as the Software Evolution
Process, a Software Developer tries to accomplish an ambitious project, without any
vision, with the same results. Except this time, the process itself hinders construction
by causing all the builders to speak different languages.

The overall effect is that the quality of communication within a Software Evolution
Process degenerates over time. So much so that two Game Artists, two Game
Programmers, two Sound Designers or two Game Designers frequently engage in their
own private conversations.30 Meanwhile, the rest of the staff stand idly by. These con-
versations may go on for several minutes in a meeting between the staff. Or sometimes,
these may go on for days, or for weeks over several meetings. All the time, the rest of
the staff present at these meetings look on, unable to comprehend, let alone contribute.

A lot of these private conversations occur through memorandum31 in the form of
E-mails. Take for example this E-mail:

‘Fyi, we sometimes have poorly authored Logan strings with
missing token indices, and it’s important to understand how
these should be handled when adding strings into the code.
There may have been emails sent around about this in the past,
but I can find them – so here’s a new example.

A made up news item with 3 alternative phrases:

String _ Id.sch#1 ““#4-Number# year old #2-Player# has
suffered #3-Injury#.””

String _ Id.sch#2 ““#4-Number# year old #2-Player# was
injured in the fixture against #7-Club#.””

String _ Id.sch#3 ““#2-Player# has suffered #3-Injury#.
Manager #6-Staff# says he’ll be back playing for
#8-Club# in no time.””

13 The Problem

The set of tokens used across all the alternatives is as
follows:

2-Player
3-Injury
4-Number
6-Staff
7-Club (other club)
8-Club (player’s club)

Not all token indices have been used (there’s no token 1
or 5). Part of the text exporter process will recognise this
and will renumber the tokens, e.g. as if the strings had been
authored as follows.

String _ Id.sch#1 ““#3-Number# year old #1-Player# has
suffered #2-Injury#.””

String _ Id.sch#3 ““#3-Number# year old #1-Player# was
injured in the fixture against #5-Club#.””

String _ Id.sch#2 ““#1-Player# has suffered #2-Injury#.
Manager #4-Staff# says he’ll be back playing for
#6-Club# in no time.””

However, the simplest way to think of this (rather than how
tokens are renumbered) is that the token order specified in a
call to NMAddNewsItem needs to match the numeric order in the
string. So to add this news item you might implement it as fol-
lows (assuming a headline containing just the Player token):

NMSetParams8 (NM _ RESET, ““tytmStClClNuPlIn””, tNewsItem::
NEWS _ TYPE _ XXXX, Club,

NIStaff(Manager),
NIClub(Club),
NIClub(OtherClub),
etc.
NMAddNewsItem (““Pl.PlInNuStClCl””, NEWS::THE _ HEADLINE _

FOR _ STRING _ ID <news::THE _ HEADLINE _ FOR _ STRING _
ID>, NEWS::STRING _ ID <news::STRING _ ID>);

Bear in mind that strings entered into DevStrings.cpp won’t
have been renumbered (as it’s one of the exporter tools that
does this). This means that the above code would produce a
broken news item until after a text export. This isn’t really a
problem so long as you’re aware of it (and most of our strings
are correctly authored and so don’t have this issue).

If you have a poorly indexed string that you’d like to
display correctly while it’s still in DevStrings, I’d suggest
manually renumbering it in DevStrings. If the string has
alternative phrases but is already in Logan, you only really
need to copy a single phrase into DevStrings and edit that.’

Source: A typical E-mail from a Software Evolution
Process of Slippery Games Inc. Anonymous. June 2006

14 Event-Database Architecture for Computer Games

Now some of you may not understand this E-mail. But that does not matter. What
does matter is that you do understand why this E-mail was written. And that when
you understand why it was written you will understand what is wrong with it.

This E-mail is from a Software Evolution Process developing a game about manag-
ing football clubs or a football management game. Now if you have played these genre
of games before, then you may recognise some of the words in this E-mail, and that the
source of this E-mail was a production process for a football management game. But if
playing a football management game were not part of your education or background or
the types of games you have played in the past, then this would not be obvious. As has
already been said, in a Software Evolution Process in the Computer Games industry,
the staff will come from different backgrounds. And you will get some staff who have
experience playing some genre of games (e.g. football management games), and others
who have not. And for those who have not this E-mail would just be mysterious.

Now even those who have played this genre of games cannot tell the exact subject
of this E-mail. It is full of vague acronyms e.g.

“NM”,
“NI”
“Fyi”

It is full of cryptic abbreviations e.g.

“ty”
“tm”
“Pl”
“Cl”
“sch”

It is full of confusing keywords e.g.

“Logan”
“DevStrings”
“text exporter”
“exporter tools”

None of these words have anything to do with the football management genre.
And even if you have played these games, then that experience is not going to be
enough to help you understand what these words mean.

As has already been mentioned, it often seems that the private conversations that
occur in a Software Evolution Process is occurring between highly skilled parties. But
the author and recipient of this E-mail do not have any superior knowledge to the rest of
the staff or anyone who has previously played a football management game before. The

15 The Problem

subject of the E-mail is a tool that allows you to format the headlines of news articles that
appear during the football season when playing the game. The articles announce the inju-
ries that have occurred to football players during a football match. That is it! As you can
see, this is not a tool meant to be only used by highly skilled staff.

The tool was meant to be used by Game Producers, Game Designers, Game Testers,
Game Programmers and even the software user or player. To add features to the game or
to correct features in the game design. But the language describing that tool has degener-
ated to the point where only a small subset of the staff can understand it. And this is not
because they have the high skills required to operate a very sophisticated tool. On the
contrary, the tool itself is very basic. But you do require high skills to decipher the cryptic
degenerative language in the E-mail being used to describe it.

Some may make the counterclaim that since some parts of the E-mail contains
some code written by Game Programmers, the E-mail was not meant for everyone.
It was only meant for highly skilled staff.

But, frstly, this has no bearing on the conclusion that the language of the E-mail
is degenerative. The ones who make this counterclaim do so because they presumably
know how to write code. And they recognise words in the E-mail which are code words
from some programming language. However, that means that those who do not know
how to write code, that is to say the vast majority of the staff involved in the produc-
tion process, would not recognise these words. And the inclusion of these words in the
language of the E-mail degenerates the language from a natural language to a pidgin
language: one part natural language, one part programming language.

Secondly, the code in the E-mail was not the main subject of the E-mail. The
main subject of the E-mail was how you format the headlines for the news articles
that appear in a football season, during a game, using a tool. This tool is made up of
three smaller tools called

1. Logan
2. text exporter
3. DevStrings

The ‘Logan’ tool is a Spreadsheet that all the staff can use to edit the text which
formats the headlines. An omission which adds to the degeneracy of the language
of this E-mail.

The ‘text exporter’ tool is a tool that converts text in the Spreadsheet into another
form, a fle or Database which is read by the game when it starts. All the staff can use
this tool to manually perform the conversion at any time. In some parts of the E-mail,
it is referred to as ‘text exporter’. In other parts it is referred to as ‘exporter tools’. An
inconsistency which adds to the degeneracy of the language of this E-mail.

The ‘DevStrings’ tool is a software library which contains provisional text which
formats the headlines that appears in the game. Alongside the text from the ‘Logan’ and
the ‘text exporter’ tool. Until that provisional text is moved from ‘DevStrings’ to ‘Logan’.

Now you may claim that the ‘DevStrings’ tool is only meant for Game
Programmers and therefore the language for that tool was only for highly skilled
staff. And therefore the E-mail was only for highly skilled staff.

But the other two tools in the E-mail were not meant only for Game Programmers.
Those tools were meant for the rest of the staff as well. Yet the language in the

16 Event-Database Architecture for Computer Games

E-mail describing all three tools is the same degenerative language. This includes
the cryptic words you see in the E-mail describing the news headlines e.g.

#3-Number# year old #1-Player# has suffered #2-Injury#

These are literally the words you see when you use the ‘Logan’ tool.
Thirdly, even the code from a programming language you see in that the E-mail

is degenerative and incomplete. It is abbreviated with the word ‘etc.’ which does not
come from any programming language. Therefore, even if you understand how to
write code, you cannot completely understand this code. And the conclusion that
the language in the E-mail describing the tool is degenerative still holds. Indeed the
inclusion of this code supports that conclusion even further.

Such is the effect of the degenerative language of the Software Evolution
Process that some of the staff miss many basic points about the software produc-
tion life cycle and come to many misconceived conclusions. For example, they
conclude that private conversations between staff are necessary when most of the
time they are not. They conclude that the vision for the software user, the appear-
ance of the User Interface and the components of the Interface, have nothing to
do with the User Specifcation. Since they hear staff use words like ‘the design
vision’, instead of the ‘vision for the software user’. They hear staff use words
like ‘the quality of the art production’, instead of the ‘appearance of the User
Interface’. They hear staff use words like ‘the fun play mechanics’, instead of ‘the
components of the Interface’. And they hear staff use words like ‘game design’,
instead of ‘User Specifcation’.

They conclude that there is nothing wrong when they hear such phrases like

‘We don’t need to update that! The design vision and the quality of the art pro-
duction, and the fun play mechanics have nothing to do with the game design’.

Nevertheless, as the quality of the language degenerates over time, in the
Software Evolution Process, it affects the overall productivity of all the staff.
And that in turn affects the overall success of the project. This has been con-
firmed by research studies,32 which showed that improved communication con-
tributed to more successful projects, increased new business and innovation, at
the end of it.

The end of a Software Evolution Process is, however, not so promising. For it
shares the same destiny as the Tower of Babel. The builders of the tower became
confused and abandoned the project. Likewise, towards the end of a Software
Evolution Process, chaos slowly begins to reign supreme. Some of the symptoms of
this chaos are that many try to take the opportunity to market themselves. As the
release date for the Computer Game approaches, they suggest changes either to the
game design, game modules, game-engine, Game data or tools which market their

17 The Problem

ideas. They make no attempt to justify themselves. Instead they make negative prop-
ositions by asking,

Why can’t you do this?
Why can’t you do that?

But as many know it is diffcult, if not impossible, to prove a negative. You have
to search through all possible cases, to make sure that there is not one case where
the negative proposition is false. In the context of a Software Evolution Process, you
have to search through all cases, through all possible features, of the game design or
technical design, for the one case where the negative proposition is false. That is to
say, a proposed change to the game design has a negative effect on another feature.
However since, as is typical at the beginning of a Software Evolution Process, these
documents would not be complete, there would be no limit to how far you have to
search. Thus, in effect, these opportunists do not prove themselves but place the onus
on others to prove them wrong. And using this tactic, they cause traumatic changes
to the game design. So much so that getting towards the end of the production pro-
cess, many of the staff cannot wait for it to end and to see the back of the project.

Not only the opportunists amongst the staff of the Software Developer but those
amongst the fnancial backers too take the opportunity to market themselves. They
bring forth propositions to market their ideas, which end up putting added pressure
on the production process.

For example, they may propose the premature release of photos of the game,
to the press, to generate publicity. Even though these photos may contain features
which either have only been partially implemented, not implemented at all or may
not be in the fnal product.

On other occasions they may propose wholesale changes to the User Interface,
one or two months before the release of the game. Even though these changes would
be, at best, cosmetic and, at worst, endangering the quality of the fnal product.

On other occasions they may propose wholesale change of the theme of the
game, all the while using the same game modules, game-engine and other tools
as before, to develop it. Even though the game may have changed not only genres
but art forms. It may have changed from being based on a flm to being based
on a sport; and from being based on a drama to being based on an athletics
competition.

In the extreme case, the fnancial backers may personally intervene. And they may,
for example, propose monitoring the day-to-day work of the Software Developer on
their premises. So that, a few weeks before the date of its release, they could test the
game on-site and increase the rate of feedback. And after the frst version has been
released, some Software Developers hire extra staff for the production of the next
version, to reassure investors. But, in either case, this merely aggravates the chaos of
the Software Evolution Process. For the greater the number of contingents partici-
pating in the Software Evolution Process, the greater the number of languages which
develop from these contingents. And the more different languages develop, the more

18 Event-Database Architecture for Computer Games

confusing the overall languages becomes. And the more confusing the overall lan-
guage becomes, the less productive the staff become.

1.4 THE EFFECT ON CREDIBILITY

Hence, at the end of the Software Evolution Process, there is an incredible
sense of relief, as the growing chaos finally comes to an abrupt end. Most of the
tools that were developed by the staff, during the process, cannot practically be
re-used. And privately, this technology would be quietly and completely over-
hauled before being used again, if at all. But publicly, many of the staff will
claim to be satisfied by the technology they have produced during the produc-
tion process.

At least, this is what they will say at the meeting which the Software
Developers organise at the end of the project. The Developers call this meeting a
Post Mortem.33 Is the name merely irony, or do they know that the game is dead
on arrival? This is one of many questions that those who take part in the meeting
ask themselves.

Could they have performed better? Could the tools have performed better? Could
the Game Designers, Game Artists, Game Programmers, Sound Designers or Game
Testers have performed better? Was the incomplete game design responsible for the
tumultuous experience which they had just gone through? Or was it all due to the
pressure from the fnancial investors?

Some, with experience of previous projects, will be left with a feeling of Déjà vu
which they cannot quite place.

Others will be left wandering if they had missed something. Was there a phase of
the production process which they should have been involved in? Was there a deci-
sion, which they should have been privy to?

Although all the staff will sense that something is missing, they will not agree
about what this is. And they will all be ambivalent about the role the Software
Evolution Process itself played in this sense of loss. Instead, they will try to
look to the components of the Software Evolution Process for an answer, the
game design, the technical design, the tools and so on. And yet they will fnd no
satisfaction.

But if they were to carefully look back to the beginning of the process, they would
fnd the answer. They would see that the only thing amiss from the project was its
credibility. For at the heart of the Software Evolution Process is the question of
credibility.

As has already been explained, the Software Evolution Process is a default pro-
cess. It is the minimal process that arises from the absence of any credible plan to
build the Computer Game. There is no formal announcement that the Software
Evolution Process has begun. Instead, there is simply either, at worst, no presenta-
tion of any plan or design for building the software. Or there is, at best, the presenta-
tion of half a plan, along with half a design, for the frst couple of weeks or months
of the project, in a meeting at the beginning of the process. Occasionally accompa-
nying this may be euphemistic references to the Software Evolution Process, when
someone ask questions about the details of the plan or design in the meeting. These

19 The Problem

include words like ‘trial and error’ or ‘prototyping’. In response to these questions,
someone might reply

‘We do have a team of people here, roughly 80, working on the project. The
idea was that we will get a green light by now, and it would be full steam
ahead. But we haven’t quite reached there yet.

Until we get the green light we can’t keep burning the money on 80 peo-
ple. There is a fundamental belief that this team should develop a Zelda Style
game. But we need to make sure that we are not burning all that cash on the
project until it is green lit.

So we will have a small group of people working on the pitch document.
Another group of people working on the Prototype. And another group will be
focusing on an all ages multiplayer game aspect.

We already have a two page document for the family friendly aspect of the
game. But we need to start prototyping on that as soon as possible…’

That would be the only sign, if any, that the Software Evolution Process had
begun. Namely, the lack of a plan34 at the beginning of the production process.

For soon afterwards, into the void left by the absence of any credible plan for
building the game, at the beginning of the Software Evolution Process, will enter
an incredible proposition. That is, a theoretical process of Biological Evolution, in
nature, that occurs over millions and millions of years, to generate minute changes
in animals to effect their survival, could be used to generate wholesale changes in
software to effect its success. All within the period of 18 months or less, that it takes
to produce a commercial Computer Game, with between 60 and 80 staff. And all
for the sake of giving that project credibility; primarily to its fnancial backers and
secondarily to its staff.

This form of Neo-Darwinism35 has precedent in other industries besides
Computer Games. Other industries too realise the credibility which the theory
of Biological Evolution commands. And they too attempt to take advantage
of it, by using it to cover up their default processes.36 So that they can give
those processes credibility. They all have different ways of making this seem
plausible.

But in the Computer Games industry, the Software Developer ensures the cred-
ibility of this audacious stunt through one fact. That is, you cannot provide a good
counter example, to the feasibility of the Software Evolution Process. You cannot
provide a counter example either from its fnal product, or from any of its compo-
nents. These include the documentation, the tools, the staff and other resources that
help build the software. These also include the language the staff uses to communi-
cate. The standards of the process are set so low that there is little requirement for it
produce good records.

For as has already been previously stated, the Software Evolution Process is ad
hoc. It only has two requirements. Firstly, that it slowly evolves and grows the soft-
ware over time. And secondly that the basis of this evolution was feedback from

20 Event-Database Architecture for Computer Games

the software user. Even the fnal product would only represent the feedback from
the software user that happened to be around, when the project literally ran out
of resources (i.e. time or money). The fnal product would not represent the set of
requirements for the process.

In short, there is no requirement for the process to be scrutable. And therefore
any Post Mortem at the end of the process is redundant. The guessing games
the staff end up playing, by examining the final product, or the components of
the process, are the inevitable consequences of this inscrutability. These games
are a distraction from the strategic failure to conceive of a credible plan, at the
onset of the project. These games lend the process a level of credibility which
it never had.

1.5 THE USE OF NDAs TO GIVE THE PROCESS CREDIBILITY

There are other devices used to give the Software Evolution Process credibility. One
of them are Non-Disclosure Agreements37 or NDAs.

Frequently accompanying the Software Evolution Process is some form of NDA,
which the Software Developer requires the staff or interviewees to abide by. And if
the staff or any observers were looking for good counter examples from the process,
these Agreements would be amongst the best. For these would serve as perfect illus-
trations of the strategic faws of the process.

These Agreements are practically unenforceable due to the inscrutability of the
Software Evolution Process. Short of a signed confession, the best that a Software
Developer could hope for would be circumstantial evidence of violations. The
Developer could only show that an alleged original feature, in the fnal product or
earlier versions, existed prior to the one found in a competing product. And that
former staff of the Developer, involved in the Software Evolution Process, joined
a competitor prior to the appearance of these features in their competing product.
Otherwise, there is no way the Software Developer could show the genesis of any
original feature, and how the accused were involved, to support their case. And the
Software Developer could only dream of proving a case, involving technical inno-
vations, taken from a project, and incorporated by a competitor into their technical
design. For such innovations, and the genesis of these innovations, would simply not
be documented.

Despite the existence of such Agreements, very few of the games produced by
Software Developers, out of the thousands released each year, have been original
games.38 Nor indeed have these games warranted such Agreements in the frst place.
For the continuous evolution of the software, based on feedback from the software
user, means that ideas very quickly become out of date anyway. Thus, any ideas
which a competitor could discern from a Software Evolution Process, at any given
point in time, would be misleading.

Any ideas which they discerned at the beginning, or the middle of the process,
would be just as misleading to them as to the staff involved. For the way the process
keeps mutating, slowly destroying any defnitions it acquires, at the beginning of the
project, also leads to the destruction of any ideas introduced during its course. And
this produces a paradox.

21 The Problem

On the one hand, the course of the Software Evolution Process is unpredict-
able, due to its constant loss of defnitions. Yet, on the other hand, the fnal product
contains little or no innovation. Since only ideas introduced towards the end of the
process maintain some defnition. And these invariably are unoriginal ideas, copied
hastily from other competing products, into the fnal product, as time runs out, and
the project heads towards a crisis.

But any of these belated ideas would be useless to a competitor. Since they could
not hope to incorporate these into their game and release it before the Software
Developer did. It would be contrary, to the evolutionary principles of the Software
Evolution Process, for the construction of any part of the product to be documented,
up to three months in advance. And no part of the game would conceivably be docu-
mented up to a year in advance, before being implemented. Thus giving any competi-
tor, who got hold of that document, time to beat the Software Developer to the market.

Once you realise that the Non-Disclosure Agreements are unenforceable and
unwarranted because they do not protect any original ideas, then you realise that
these must serve some other purpose. And once you realise that the Software
Evolution Process enters where there is no credible plan to build the software, in this
case a Computer Game, you realise exactly what that purpose is. Namely, through
Non-Disclosure Agreements, and other devices, the Software Developer gives the
Software Evolution Process an aura of credibility. These devices act as a shroud that
covers the Software Evolution Process in mystery.

These devices include the game design, the technical design and other docu-
ments. Each will be labelled with notices reminding the staff that it was ‘Strictly
confdential’ (see Figure 1.3).

Even though each of the documents, the game design and the technical design,
will largely be empty. But for a wish list of vague points which the authors hoped
the process will pass by at sometime in the future. Even though all of these docu-
ments would already be covered by the Non-Disclosure Agreements which the
staff signed.

All for the sake of exaggerating the secrecy and mystery surrounding the Software
Evolution Process. So that, through this mystery, it achieves a certain level of mys-
tique. And, through this mystique, it achieves a veneer of credibility, at its onset.

1.6 THE USE OF SECRECY AND MYSTERY TO GIVE
THE PROCESS CREDIBILITY

Another device used to give the Software Evolution Process credibility which is
closely related to NDAs is the use of code names.

Often Software Developers will give code names to their projects. To disguise
the contents of the projects they were working on for a client. And the staff will be
required to use these code names when discussing projects internally or externally
with clients. These code names will be based on some kind of theme like colour e.g.

Project Red
Project Blue
Project Green

22 Event-Database Architecture for Computer Games

FIGURE 1.3 A typical example of a page from an incomplete game design in a Software
Evolution Process of Slippery Games Inc. (Source: A typical game design from a Software
Evolution Process of Slippery Games Inc. showing the excessive use of confdentiality to
shroud in mystery unoriginal game designs. Anonymous. 2005.)

23 The Problem

Or they may have random titles based on names of Greek Gods, precious metals
or sauces e.g.

Project Zeus
Project Sapphire
Project Tomato

All of these names, like the NDAs, serve to shroud each project in mystery and
secrecy. So much so that staff working at the same Software Developer but on two
different projects cannot discuss what they are working with their colleagues.

Even though the staff may share the same technology and tools on the two dif-
ferent projects. And they cannot really understand these tools or technologies unless
they understand the projects which these came from.

Even though the staff working on one project may sometimes fnd the code name
of other projects in the fles they use in their project. And they will be required to edit
these fles and substitute the code names of the other projects with more code names.

Even though sometimes the code name of these projects end up in the names
of fles, game modules, game-engines or software libraries used to build the fnal
product.

Even though by introducing these code names in a project, the Software Developer
will be deliberately introducing words which were meant to obfuscate what a project
was about. And thus accelerating the degeneration of the language of the Software
Evolution Process. That would otherwise naturally degenerate anyway. Due to the
way the staff from different backgrounds will add words to the language based on
their background. In the absence of any clear plan or design at the start of the pro-
cess, which gives them a suitable language.

Even though by introducing these code names in a project, the Software Developer
will be giving it a false name. And thus aggravating a project already suffering from
a lack of identity and a lack of vision. Due to the way the Software Evolution Process
begins with an incomplete game design.

Again, just like NDAs, these code names will be all for the sake of exaggerat-
ing the secrecy and mystery surrounding the Software Evolution Process of each
project. So that, through this mystery, it achieves a certain level of mystique. And,
through this mystique, it achieves a veneer of credibility.

1.7 THE USE OF INSCRUTABILITY TO GIVE
THE PROCESS CREDIBILITY

As previously mentioned, there is no requirement in the Software Evolution Process
to keep good records. And the process would begin with a lot of documents (e.g. the
game design and the technical design, the User Manual, the test plan) which were
either incomplete. Or these did not exist at all. Or these were subsequently not kept
up-to-date after the process began.

As a result when errors surfaced later on, it would be next to impossible to inves-
tigate the source of the errors, since the process would be inscrutable. It would be

24 Event-Database Architecture for Computer Games

next to impossible to tell when or why errors occurred because of changes made to
the game design. It would be next to impossible to tell when the introduction of one
feature conficted with another introduced later on. It would be next to impossible
to tell when the news headlines congratulating a new football manager for winning
the frst football match, conficted with news articles with sarcastic headlines for the
football manager winning the football season curtain raiser.

Some may say well you can tell when the changes to the fles used to build the
frst feature were made and submitted to a Software Repository. And when you
can tell when the changes to the fles used to build the second feature was made
and submitted to a Software Repository. And therefore you can tell when the error
was introduced.

But as already explained, in the Software Evolution Process you may have two
groups independently developing two features in the game, in two concurrent over-
lapping sub-processes. And it later emerges that there is a confict between the two
features. And neither the times that the fles used to build the frst feature, nor the
times that the fles used to build the second feature, were checked into the Repository
will tell you when or why the error occurred. The error occurred somewhere in
between when both groups started developing the two features, and when they suc-
cessfully built and tested those two features. Before they submitted the fles to the
Software Repository. And that time will not be documented.

Likewise, it would be next to impossible to tell when errors occurred because one
feature was missing or not well-described. It would be next to impossible to tell when
the player could not complete a quest in an adventure game because some item they
needed to complete the quest was missing. When some special weapon or armour
they needed to retrieve from one character in the Game World,39 and give to another,
had not been made. Or when the look, appearance and animation of the frst charac-
ter and second character had not been decided.

Some may say well you can tell when the quest was written into the game design.
And you can tell when the quest was added to the Game World. And therefore you
can tell when the error was introduced.

But those times do not tell you when the error was introduced. At the beginning
of a Software Evolution Process, the game design will be incomplete, and some
quests in the game design will also be incomplete. It is not clear at that point that
any errors have been introduced. So long as before the quest was tested in the Game
World, all of the items, locations, characters and animations that were required for
the quest had been added to the Game World, then there would be no errors. But the
length of time required to complete building these items, locations, characters and
animations in the Game World would be indeterminate. That length of time would
not be documented. And therefore you could not tell when the errors with the quest
were introduced.

Likewise, it would be next to impossible to tell when errors occurred due to
changes introduced in the technical design for a Formula 1 Racing game. When
the sound generated by the engines of the cars after a crash began to sound
very similar to the sound generated by the engines of the cars revving up on the
start grid.

25 The Problem

Some may say that well you can tell when the fles used to generate the sound of
the engines of the cars were changed. And therefore you could tell when the sound
generated by the engines after a crash was introduced.

But did the error occur when the sound of the engine of cars revving up on the
start grid was generated? Or did the error occur when the sound of the engine of
the cars after a crash was generated? If the Software Evolution Process began
with an incomplete game design, which did not specify how the engines should
sound on the start grid or after a crash, then how do you know when the sound
generated on the start grid or after a crash was in error? And if you do not know
what the engine should sound like, then how can you tell when the error was
introduced?

All of these errors in the Software Evolution Process will be explained away as
being due to the inscrutability of the process. And in the absence of any conclusive
proof as to the cause, a lot of provisions would be added to the process to avoid the
errors in the future.

A special Game Programmer would be assigned to generating the sounds of the
engine of the cars for the racing game. To make sure the sounds it generated were
unique. A special Game Tester would be assigned the task of checking all the quest
could be completed in the adventure game. A special Game Designer would be
assigned the task of examining the news articles in the football management game.
To make sure there were no conficts.

All of these makeshift assignments will be used to patch up the Software Evolution
Process, and give the process credibility so that it could continue.

1.8 THE MYTHICAL MAN MONTH

As mentioned in the previous subchapter often a special member of staff is des-
ignated or assigned to patch some of the problems that emerge from the Software
Evolution Process. This leads on to another device which is used to give the Software
Evolution Process credibility.

And this is a myth known as the Mythical Man Month.40 The myth is that by
doubling the staff involved in the Software Evolution Process, you can halve the
time it takes to produce a game. It is the Mythical Man Month that gave the Software
Evolution Process its name. It was the attempt to come up with a formal theory to
explain why doubling the staff involved in a Software Evolution Process did not half
the time it took to complete a project. That led the man who attempted to formalise
this theory to coin the phrase Software Evolution to explain the phenomenon.

But so far he has not been able to come up with a theory which satisfactorily
explains the phenomenon. And stops the Software Evolution Process becoming
more chaotic and unpredictable when you double the staff involved.

Since you have greater communication problems in the Software Evolution
Process when you double the number of staff involved. And you need more time to
train the staff you added to the process. To get them to understand the language of
the process. You need more time to get them up to speed before they can begin to
contribute.

26 Event-Database Architecture for Computer Games

Nevertheless, many Software Developers still continue to believe in the myth.
And that by doubling the number of their staff involved at the end of one process,
and the beginning of the next process, they can reduce the time it takes to make the
product in the second process. And they can increase the rate of feedback in the
Software Evolution Process and make it more stable.

Or so they will say to their fnancial backers, who query the process, after a game
has been released, which either had lots of errors or was delayed. They will reassure
the fnancial backers by reiterating the Mythical Man Month. That by doubling the
number of staff, and increasing the rate of feedback, they will stabilise the Software
Evolution Process. All to give the process credibility.

1.9 THE USE OF THE PROMISE OF RAPID FEEDBACK
TO GIVE THE PROCESS CREDIBILITY

As mentioned in the previous subchapter, the Mythical Man Month is one of the
devices used to give the Software Evolution Process credibility. Part of this myth
is the promise of rapid feedback can make the process more stable, less chaotic and
more predictable.

In theory, if the errors that emerged in the production process could be caught
earlier on, then these could be addressed earlier. And stop them growing into
major problems later on. In the Computer Games industry, the more Game Testers
or people you have performing a similar role you have in the process, to test the
game, the more eyes you will have examining the product. And the more eyes you
have examining the product, the more likely it will be you will catch errors at an
earlier stage.

In practice, this does not work. The Game Testers do not have anything to guide
them when performing these tests. There is no standard to measure the game by. In
the classic software production life cycle, you would have a test plan that would be
your standard. But in the Software Evolution Process, they do not have a test plan or
even a User Manual to guide them in the test. Since, in the classic software produc-
tion life cycle, a complete test plan requires a complete User Manual which is used
to produce that test plan. And a complete User Manual requires a complete User
Specifcation or game design which is used to produce the User Manual. But, in a
Software Evolution Process, you will not have a complete game design.

Therefore the Game Testers have to use their own intuition when conducting
these tests. They have to use their own subjective judgement when playing the
game, to decide when something looks right or wrong. The quality of the tests they
conduct varies greatly because their experiences, which informs their intuition,
varies greatly. And furthermore, there is no standard (i.e. a test plan) to measure
the game by. There is nothing to stop them from testing the same areas of the
Game World, the same features in the World, the same menus or the same com-
mands in the User Interface. As a result lot there is a lot of redundancy in the test
they perform.

To compensate for the lack of a test plan, the Software Developers attempt to add
more Game Testers to give the Software Evolution Process credibility, to make it
more stable. But the more Game Testers you add to the Software Evolution Process,

27 The Problem

the greater the redundancy they will produce. And the greater the redundancy they
produce, the more resources (i.e. staff or time) would be required to go through all
the tests and eliminate the redundancy.

And to compensate for the lack of a User Manual, the Software Developers
attempt to use automated tutorials built into the game. That introduce new players to
the game and show them how to use the User Interface. All for the sake of giving the
process credibility. When it becomes self-evident, to the Game Testers, towards the
end of the process, that a lot of changes had been made to the User Interface since
the beginning. They were not aware of most of the changes. And there had been no
document that kept track of all these changes that could explain it to the players. So
some device was required to explain it all.

However, the tutorials introduced into the game to explain it all, at the end of
the process, end up making software more complex at a time you want to reduce
complexity. Now the Software Developer has to add more parts to the software to
build these tutorials. They will require more work from the Game Artists, Sound
Designers, Game Designers and Game Programmers. All of that work would be
unplanned.

And this new work will add more relationships, more dependencies between
these new parts of the game and other older parts of the game. Now if the Software
Developer changes the User Interface and adds new components, new buttons, com-
mands, then they will not only have to edit the old parts of the game to use the new
components. They will also have to edit the new parts which teach the players how
to use the new components.

And when the Game Testers tests these new components of the User Interface,
they will have to test them both in the main game and in the tutorials. And the
greater complexity introduced by these new parts, the greater number of dependen-
cies between the old and new parts, and the testing of these new parts, will introduce
new errors. That the Software Developer would not otherwise have if they had a User
Manual that was separate from the game, which explained the User Interface.

1.10 THE DECLINE AND FALL OF CREDIBILITY

All the devices which are used to give the Software Evolution Process credibil-
ity only help it to achieve this credibility by implication. And, it achieves this
only for a limited time. Since the devices which give it this credibility are all
ineffectual.

Eventually, all of these devices end up undermining its credibility. These included

1. NDAs,
2. excessive secrecy and mystery surrounding projects,
3. code names for projects,
4. the Mythical Man Month,
5. the promise of rapid feedback.

This credibility is lost, frst and foremost, on the staff who follow the Software
Evolution Process. They subsequently become aware that the game they are

28 Event-Database Architecture for Computer Games

producing contains little or no innovation to warrant such Non-Disclosure
Agreements and the excessive secrecy and mysterious aura which surrounds the
project.

Likewise, the code names given to the projects only end up obfuscating the
vision for the project. And undermine a project already suffering from a crisis
of identity because of the lack of a clear plan or complete game design to build
the game.

Similarly, the inscrutability of the process, which helped maintain any credi-
bility it achieved, with the fnancial backers, at the beginning, ends up undermin-
ing it. For the leadership of the project, and its fnancial backers, subsequently
become aware of the consequences, of the lack of written designs or plans for
building the software. They become aware that the leadership cannot account for
some of the errors that arise later on, because of this inscrutability.

Likewise, the Mythical Man Month ends up undermining the Software Evolution
Process. Any additional staff introduced into the process late on, by the fnancial
backers or the Software Developers, to restore its credibility, ends up undermin-
ing it. For the greater number of staff requires greater communication between
the staff. And it requires more time for the new staff to learn the language of the
process, and get up to speed, before they can start contributing. The older staff,
who have had previous experiences of the Software Evolution Process, realise that
the quality of the work they produce starts degenerating. And it becomes far worse
than when they were working with fewer staff or alone. Even though they may not
recognise this as a classic symptom of the Software Evolution Process. Namely, as
has already been explained, the more contingents participating in the process, the
more chaotic production becomes.

Correspondingly, the continuous changes to the game design and evolution
of the game, based on rapid feedback from the software user, which gives the
process some credibility at the beginning, end up undermining it. The enthusi-
asm of the staff, at the beginning, gives way to cynicism as the changes become
exhausting and seemingly never ending.

Finally, towards the end of the process, opportunists take advantage of the
steady decline, in the credibility of the project, to market their own ideas to sal-
vage this credibility. They propose changes to the game design which cannot be
refuted, by making negative propositions

Why can’t you do this?
Why can’t you do that?

These propositions cannot be refuted for exactly the same reason that the
feasibility of the Software Evolution Process could not be refuted at the begin-
ning of the project. Namely, there was no requirement for the Software Evolution
Process to keep good records or documentation. And therefore the process would
be unscrutable. The game design and technical design would be incomplete and
not kept up-to-date. And it may be possible that, in some future change in the

29 The Problem

game design or technical design, these negative propositions may become false.
And some proposed change in the game design or technical design may become
feasible.

The credibility of the entire process reaches its peak at the very beginning.
And this is also, unsurprisingly, the high point of its documentation. From this
apex, the credibility of the process rolls downwards to its lowest point, at the end
of the project, just before the release of the Computer Game. And those products
whose processes lose all credibility, before this date, simply never see the light
of day.

1.11 THE POST MORTEM

Despite the fact that all the devices used to give the Software Evolution Process
credibility inevitably fail, successive generations of Software Developers continue to
lend the Software Evolution Process credibility. The Mythical Man Month, and the
Software Evolution Process from which it stems, have both become pervasive. So
much so that, in the Post Mortems at the end of the process, in response to the staff
that were sceptical of the process, the Software Developers who advocate it expect
the sceptics to provide examples that illustrate its faws.

By which they mean they want the staff to provide counter examples from inside
the phases of the production process itself i.e. Pre-production, Production and QA.
They do not want counter examples from outside of these phases. That show that
the Software Evolution Process can never achieve what were supposed to be its two
main characteristics. Namely, they have no interest in counter examples which show
that it cannot evolve software without degenerating, nor can it depend on feedback
from the software users.

Instead, they presume to conduct the Post Mortem on the basis of a fallacy known
as begging the question. What could have been done better during the process? This
question assumes that the Software Evolution Process has ended, the staff can scru-
tinise the results and they can assess what could be improved in it. The question
invites the staff to assume the conclusions of a Post Mortem i.e.

1. the process has ended
2. the process can be scrutinised
3. the process can be improved

Without any proof to support those conclusions. All of these conclusions
are false.

Firstly, the conclusion that the process has ended is false. As previously explained,
a Software Evolution Process is an open-ended process which never ends. A real
Post Mortem could not reach the conclusion that the process has ended. There will
be no document which clearly states, this or that is the end-point. This or that should
be in the fnal game. So that you could use that document to conclude the process
had ended.

On the contrary, there will sometimes be documents which prove the opposite
case, that the process has not ended, such as the number of Bugs41 being reported in

30 Event-Database Architecture for Computer Games

FIGURE 1.4 A typical example of a bar graph showing the new errors reported in a Bug
Database, each day, over the course of six months, during a Software Evolution Process of
Slippery Games Inc. (Source: A typical report of new errors in a Bug Database, during six
months of the fnal, testing phase of a Software Evolution Process of Slippery Games Inc. The
game was a football management game. It should have been released before the beginning of
the football season in August. But you can see Bugs being reported in the game all the way
up to December.)

the Bug Database.42 This will show that there were still be some outstanding Bugs left
when the process nominally ended, and game was released (see Figures 1.4 and 1.5).

Secondly, the conclusion that the Software Evolution Process is scrutable is also
false. As previously explained, the Software Evolution Process also has no require-
ment to keep good records. The game design will be incomplete. The technical
design will be incomplete. Therefore a real Post Mortem could not reach the conclu-
sion that the process could be scrutinised.

Thirdly, the conclusion that the Software Evolution Process could be improved
is false. Since the process would not have the records required to allow the staff to
identify the areas in it that could be improved. A real Post Mortem could not reach
any conclusions about how the process could be improved.

This then begs the question! If a real Post Mortem could not possibly reach these
three conclusions, then what would be the point of the Post Mortems at the end of a
Software Evolution Process? What purpose would they serve?

The answer to that question is simple. The Post Mortem meetings merely serve as
a release valve, as a form of therapy. To allow the staff to release their frustrations
that naturally build up during the Software Evolution Process due its major faws. The

31 The Problem

FIGURE 1.5 A typical example of a Web Page showing the high number of Bugs reported
in a Bug Database during the QA phase of a Software Evolution Process of Slipper Games
Inc. (Source: A typical report of errors in a Bug Database, during the fnal, testing phase of a
Software Evolution Process of Slippery Games Inc. Anonymous. June 2007.)

most important of these will be the communication between the staff, the way their
language degenerates with time and the way the software degenerates as it evolves.

‘Please add any comments related to the working with other teams here:

“You are awesome!!”
Publishing reshuffing the priorities of bugs to suit their needs is unhelp-

ful i.e. “They make their personal issues top priority so you end up
fxing a wrong ‘cuddle a teddy bear’ animation, rather than game
breakers.”

Design should be more assertive and not allow Publishing and execs to
change designs.

“[Last minute changes were reasonable…] if they weren’t camoufaged
as a feature request.”

“xbox save system. This was a last minute bug request, which actually
turned out to be a whole rework of it.”

“…kudos to our compliance teams ([Redacted] and others). They have
been very helpful in answering questions.”

R---- Tech sending bugs straight back, requesting that we verify the bugs
are actually for them, when that should really be their job.

32 Event-Database Architecture for Computer Games

“Everyone working on [Redacted] is generally quite nice so no com-
plaints here!”

“Being part of [Redacted]Systems I sometimes fnd myself not being
informed of being part of discussions about features directly involv-
ing our systems.”

“Sometimes g--- tech don’t like us sending things their way and we have
to fx their bugs.”

“Members from other teams who chipped in in the run up to [Redacted]
were spot on.”

“Production have been spot on in almost all interactions.”
“Additional design or dev bugs coming in from publishing are sometimes

really poorly scoped or have insuffcient information.”
“More feshed out, more timely designs for the tasks would be appreciated.”
“Last minute change requests have been a little extreme in a few cases.”
“G – tech were good!”
….

1. Were you happy with the kinds of tasks that were assigned to you?

“Yes!”
“Can’t complain”
“Yes. My work was pretty much always scoped to my expertise.”
“Yes, most of the time, but sometimes bugs like to hide or be diffcult to

track.”
“Most of the time I was bug fxing monkey, but retrospectively it was

ok… but frustrating”
“Yes, happy to take on more”
“I’m happy with any task, I like challenges.”
“Yeah for the most part.”’

Source: A typical Post Mortem Document from Slippery
Games Inc. 2017. Redacted. Anonymous

1. Overall, how do you feel [Redacted] went?
It could have been managed better. It was initially going to be released
around September? But then it was moved back to December? And then it
was moved again back to March? And then it was moved back again to June?
Missing so many deadlines seems bad for the reputation of the company.

2. Which aspects went well during the development of [Redacted]?
The optimisation which some how managed to improve the performance of
[Redacted] to the point where the Producers ([Redacted[?) were satisfed with
it. The User Interface seemed to go through a lot of changes and iterations but
somehow the people working on it managed to keep up with the changes.

3. What expectations did you have about working on [Redacted], that did or
didn’t happen?
I was expecting [Redacted] to be released in December. But that did not
happen. I expected to rely on other people’s expertise to help me understand
the project. And they did help when they could especially ….

33 The Problem

The Software Developer always concludes the Post-mortem meeting or therapy
session by asserting that there was no ideal process. To placate the staff’s frustra-
tions and get them to accept that it is only natural. Although there are several
ideals but not one that the Software Developer would be willing to admit to. Most
Software Developers do not even know what the classic software production life
cycle is, especially in the Computer Games industry. And those that do reject it as
the ideal.

Most Software Developers do not even know where the Software Evolution
Process came from, and that the man who gave it its name has written several laws
describing it. Those that do know reject these laws as the ideal.

Instead, some have chosen to hold up the theory of Biological Evolution as the
ideal. But as has already been explained, they are at best being credulous and at worst
fraudulent. Biological Evolution is generative and never ends, where as the Software
Evolution Process is degenerative. Although, theoretically, its phases are infnite,
practically the process always, rapidly and effectively grinds to a halt, shortly after it
begins. The vast majority of the modifcations to the Computer Game, after the frst
rounds of designs have been written and built, are remedial. Thus the software is a
spent force long before the day of its release.

Besides, who would, in all sincerity, choose to be part of a software production
process which never ends? What would be the chances? That one of the longest, most
complex processes in nature, would turn out to be an exemplary model for an ad hoc
process? A default process which was merely incidental to a project suffering from
a lack of credibility?

4. What frustrations did you encounter working on [Redacted]?
There was little sense of a Game Design, and how far the production pro-
cess was to completing that Game Design. It seemed that everything was
in a state of flux, features were being added or removed, without any
announcement.

5. What one thing would be most important to improve for our future
projects?

This can be something you have already mentioned that you would like to
call out as the most important thing to you

There should have been more show-and-tell, to give people an idea of
what other people were working on and how far they had progressed.

6. Anything Else?
There was little or no documentation of work done. A lot of communica-
tion seemed to rely on informal verbal communications, when other peo-
ple may be busy and do not have the time to stop their work and explain.
And this is also a flaw in the [Redacted] Engine. This Post-Mortem is far
too late to feedback into other Projects which are about to finish or half-
way through.’

Source: A typical Post Mortem Document of Slippery
Games Inc. 2020. Redacted. Anonymous

34 Event-Database Architecture for Computer Games

NOTES
1. Classic software production life cycle. A production process that follows the analysis,

design, implementation, testing, installation, maintenance and retirement of software.
See Glossary.

2. Software design. A breakdown of the software components, tools and techniques that
will be used to build and assemble software that meets a User Specifcation i.e. a cus-
tomer’s requirements. A breakdown of the software procedures and data that will be
used to build a software module.

3. Software module. A small piece of software, which is a component part of a larger
computer program. Each solves one facet of the overall problem the programme was
designed for.

4. Software data. Information suitable for computer processing. Game data. Gen-
eral information which is shared between software modules e.g. the name of
items in the world, commonly used text, 2D images, 3D models or sound. Abstract
data. Special information which is designed to be used by a single software
module.

5. Software library. A collection of computer programs, or software modules, which
perform commonly repeated task on computer hardware e.g. reading data from, and
writing to, computer fles.

6. Game design. A term sometimes used to refer to the User Specifcation of software in
the Computer Games industry. It is a description of the goal of a game, the different
stages, the progression and the User Interface through these stages.

7. Interface. A common boundary. User Interface. The set of components (e.g. images,
messages, commands or menu options) that allows a user to interact with software.
Programming Interface. The set of components (e.g. procedures or data) that allows
one software module to interact with another.

8. Technical design. A term sometimes used to refer to a software design, in the Com-
puter Games industry. It is a description of the software modules, data, tools and tech-
niques that will be used to implement a game design.

9. Game module. A software module which is used to implement unique aspects of a
game.

10. Game-engine. A set of software modules (or library) which were designed to be re-used
to make different games.

11. User Manual. An instruction booklet, for software users, which explains how to solve
a problem using the software.

12. Pre-production, Production and QA. The differences between the names of the
phases, of the production of Computer Games, and other software, stem from the crisis
of identity which the Computer Games industry suffers from. See Glossary.

13. Software Developer. A person or company that produces software.
14. Platform. A marketing term for a computer hardware or Operating System or third-

party game-engine that a Computer Game can be built and sold on.
15. Game-editors. One or more tools that allow the elements of a game to be edited. These

elements may either be menus, locations, characters or other items that appear in the
game. See Glossary.

16. Software Evolution Process. A name given to any of a large set of ad hoc, non-linear,
software production processes that are meant to evolve a piece of software to meet a
software user’s requirements. These are based on rapid feedback from the user. See
Glossary.

17. Practical application (of Biological Evolution). Advocates of the application of the
theory of Biological Evolution, to software production, can be found in many quarters
of the Software industry. See Glossary.

18. Open-ended process (of Biological Evolution). The extinction of a species is not the
end-point or goal of Biological Evolution. The goal is survival; survival of the fttest.
See Glossary.

35 The Problem

19. Art Pipeline. A manual, distinct sub-process of the production of Computer Games, for
generating artwork. See Glossary.

20. Build Pipeline. An automated, distinct sub-process of the production of Computer
Games, for periodically building and testing the game to ensure no errors have been
introduced into the building process, due to rapid changes. See Glossary.

21. Evolve software without degenerating. M. M. Lehman, who gave the Software Evolu-
tion Process its name, has always found the process degenerative and denied any link
between it and the generative Biological Evolution. See Glossary.

22. Feedback from the software users. Virtually all commercial software licences exclude
the software users from the production process. See Glossary.

23. Game Producer. An employee of a games company in charge of the overall production
of a game, from getting its fnancing, through its analysis, design, implementation,
testing, to its release.

24. Game Designer. An employee of a games company responsible for game designs.
25. Game Tester. An employee of a games company who tests the software at the end of its

production.
26. Game Programmer. An employee of a games company who writes the software for

games.
27. Game Artist. An employee of a games company who makes 3D models, 2D images and

animations used in a game.
28. Sound Designer. An employee of a games company who creates and records the sound

and music played in a game.
29. Tower of Babel. In his book, ‘The Mythical Man Month’, Frederick P. Brooks com-

pared the confusing language that arises in the Software Evolution Process to the build-
ing of the Tower of Babel. See Glossary.

30. Private conversations. Some isolated observers may view the private conversations,
and the decisions which come out of these, as benefcial to the productivity of a Soft-
ware Evolution Process. But that would be a mistake. See Glossary.

31. Memorandum. The primary source of the explanation of the tools used, in a Software
Evolution Process, are memoranda. See Glossary.

32. Research studies. Studies conducted for the International Business Machines Corpo-
ration (IBM) and the Microelectronics and Computer Technology Corporation (MCC)
showed that improved communication had a benefcial effect on productivity. See
Glossary.

33. Post Mortem meeting. A meeting conducted at the end of a software production pro-
cess, by the staff involved, to retrospectively examine the pros and cons. And to decide
the lessons to be learnt from the experience. See Glossary.

34. Lack of a plan (in Software Evolution). Instead of the plan (i.e. the game design and
technical design) providing for contingencies, the plan itself becomes a contingency,
i.e. a future event which cannot be predicted with certainty. See Glossary.

35. Neo-Darwinism. The synthesis of a modern theory with the theory of Biological Evo-
lution by Charles Darwin. Usually this refers to the synthesis of genetics with Darwin’s
theory. See Glossary.

36. Default processes (based on Neo-Darwinism). Other industries tend not to make
explicit references to the theory of Biological Evolution, through the names of their
default processes. They are more pragmatic about what they call these processes. See
Glossary.

37. Non-Disclosure Agreement. A confdentiality agreement not to divulge information
relating to a software project, to anyone outside that project. The agreement would
normally be used to stop the disclosure of original inventions. And it may sometimes be
incorporated into the contracts of the staff involved in that project. But the agreement
has often been abused. See Glossary.

38. Original games (released each year). The majority of the Computer Games that have
been released each year have tended to be clones or sequels of successful games from
the past. See Glossary.

36 Event-Database Architecture for Computer Games

39. Game World. An imaginary world space in which a game takes place.
40. Mythical Man Month. The theory that if it took one person a certain amount of time

to complete a task, it would take two approximately half the time to complete that same
task. See Glossary.

41. Bug. A software error. The name comes from an anecdotal story about an error caused
by a moth short-circuiting an old computer.

42. Bug Database. A Database of the errors found in a software product. See Glossary.

37

2 The Solution

Clearly, the solution to the problem of building a game, which lacked defnition,
would be not to default on the Software Evolution Process. This would merely under-
mine the credibility of the production process. Instead, in its place, the Software
Developer should substitute a process which had credibility. A process would not
have to be perfect to be credible: merely open and honest. A credible process would
give at least the language, the staff used to communicate, defnition. And this would
make them more productive, than in a Software Evolution Process.

One obvious way this defnition could be provided would be for the Software
Developer to complete, or attempt to complete the game design, at the beginning
of production. But, as has already been mentioned, it may not be in the Developer’s
interest to write a complete game design. If the Developer seeks fnancial backers
to publish the game, the fnancial backers may request changes to some, if not all of
the game design. And the Software Developer may waste a lot of resources trying
to meet these requests. They may have to edit a lot of the game design, the technical
design, the tools and the game they had already built.

It may be, in the best case, that either the time it could take to edit the game in this
manner could be negligible. Or that the Software Developer could build the game
frst, before seeking a fnancial backer. And so they could be in charge of the game
design, during production.

Nevertheless, in the worst case, the Software Developer would not be in charge of
the game design; the fnancial backers would. And the time it would take to edit the
software, after the game design had been changed by the fnancial backers, would
not be negligible.

A solution that could address this worst case would also beneft the better cases. It
would beneft those Developers who did not have the resources to produce and main-
tain a complete game design, during the production process, to meet the demands
of the fnancial backers. And it would also beneft those Developers who did have
the resources. Since they could save these resources (that is staff, time and money),
if they choose to.

So, in the worst case, another way in which this defnition for the language of the
staff could be provided for would be through a software architecture.1 And through
a software production process based on that architecture. The software architecture
would be used to produce technical designs that would meet the requirements of the
game design, as these changed throughout production. The architecture would pro-
vide principles for how the software designs (i.e. technical designs) were composed
and changed. So that, the software designs would facilitate the defnition of the lan-
guage used by the staff to communicate.

The software production process, based on the architecture, would be used
to ensure that architecture was applied correctly, from the beginning to the end
of production. It would verify that each software design produced met both the

DOI: 10.1201/9781003502784-2

https://doi.org/10.1201/9781003502784-2

38 Event-Database Architecture for Computer Games

requirements. That is to say the requirements of each change in the game design and
the requirements of the software architecture. Thus, the production process would
also ensure that the software itself always kept its defnition. That is, it never degen-
erated, but always kept the same structure and did not increase in complexity.

These two solutions are namely the EVENT-DATABASE ARCHITECTURE
and the EVENT-DATABASE PRODUCTION PROCESS.

In the Event-Database Architecture, the two principles that would govern the
composition and the changing of a software design would be a set of EVENTS and
a GAME DATABASE.

Events would control the fow of the game. Any external or internal branch2 in
its behaviour would be caused by an Event. Each Event would have an identifer (or
ID3). This would be either a number or a word. Each Event would have one or more
ACTIONS, which would respond to it. An Action would be one or more software
procedures,4 which would be performed in response to an Event. An Action could
either be as small as simply playing a sound, or displaying a single image. Or it could
be as large as loading or starting in a new part of the Game World.

Actions would be performed by separate game modules (or GAME OBJECTS).
Each Game Object would be simple and perform a small set of Actions. There
would be lots of these, as well as many Events. This would give the Game Producers
and Game Designers the option of inserting items into, or modifying, the fow of
the game as they liked. This would allow them to adapt the game to their vision, as
this changed. But much more than that, Events would provide a means of identify-
ing relationships between the different components of an incomplete game design.
And by doing so, these numbers or words would contribute to the defnition of the
language, for all the staff building, or extending that game design.

The Database5 part of this software architecture would be a single, central stor-
age of information, which would hold all the data used in the game. This includes
the shared Game data, from the technical design, and the Abstract data, from the
game modules and software libraries.

This Game Database would be a Relational Database.6 A Relational Database was
originally designed to manage large amounts of business data. But it has now become
the most widely used form of Database for many different types of applications.

A Relational Database holds data about a set of entities. An entity is a single
word or abstract concept in a feld of application. In this case, the feld of application
is Computer Games. So each entity could be

a character in the Game World,
a location,
an animate or inanimate item in a location,
the animation of a character or an item,
a menu,
a button on a menu,
a piece of music,
a sound effect,
a graphical effect,
and so on.

39 The Solution

A Database is made up of Database Tables.7 Each group of entities (characters,
locations, animate or inanimate items and so on) is held in the same Database Table.
And each Database Table is made up of rows known as Database Records,8 and
columns known as Database Fields.9

A Database Record holds the data for a single entity in a Database Table e.g.

the name of a character,
its location in the Game World,
its health,
its inventory,
and so on.

A Database Field holds a single piece of data about each entity. For example, a
Database Field which holds the names of characters could hold

Matthew
Mark
Luke
John
James
Simon

The frst Database Field, in each Database Record is used to identify that Record
in the Database. And it is known as a Primary Key.10

The Database, used in the Architecture, would be created and maintained by
a professional, Database Administrator.11 The Administrator would maintain the
quality of the description of the data at a high standard. The Administrator would
also ensure that there were no duplications of data in the Database. This, along
with the high quality of the description of that data, would provide the staff with
a high-quality language to use. The quality of this language would be maintained
by the Database Administrator from the beginning to the end of the production
process.

The Database Tables would fall into four main categories:

1. publicly shared Game data
2. privately restricted Abstract data that only specifc software modules or

software libraries would use
3. the properties of Events
4. the properties of Game Objects

You may be tempted to break up the single Game Database into four or more
smaller Databases because

a. there are four categories of Database Tables.
b. access to some of the data e.g. private restricted Abstract data should be

hidden and restricted.

40 Event-Database Architecture for Computer Games

But in doing so you may, in turn, tempt some of the staff to vary the quality of
description for each of these smaller Databases. Once some of the Databases were
out of sight, it would be very easy for these to become neglected. Or for some of the
smaller Databases to be treated as somehow special. And therefore not in need of
the same quality of description as the rest of the Game Database.

However, as already mentioned, the high quality of the description of the data in
the Game Database produces a high-quality language for the staff to use to commu-
nicate. And if the quality of the description of one of the smaller Databases degener-
ates, then the communication amongst the staff will degenerate. And you will start
noticing private conversations occurring only between the staff who understand the
degenerative language of that Database.

In certain situations, hiding private restricted Abstract data may simplify soft-
ware. This may reduce unnecessary dependency between software modules. If one
or more software modules depend on the internal structure of the private restricted
Abstract data, of another, it increases the complexity of changing that structure.
Whenever you modify that internal structure, then you have to modify all of the
software modules which access it. Therefore, you may see a need to have a separate
Database for this private restricted Abstract data.

But this increase in complexity only arises if the staff who write a new soft-
ware module write it in such a way that it depends on the internal structure
of the private restricted Abstract data of another. However, the perception of
the description of that private restricted Abstract data, by the staff, does not
increase the complexity. Nor does placing all Abstract data in one central Game
Database.

By placing all the data in one central Game Database you would ensure that the
quality of the description of the data was consistent throughout.

Another important requirement of Game Database is that it should be in a non-
proprietary, open data format.12 This gives you the following advantages:

1. You do not restrict yourself when it comes to your choice of software you
use to create and manage the Game Database.

2. You do not restrict yourself if you choose to outsource the creation and
management of the Game Database to another company.

3. You can scale up the Game Database to the point where you can outsource
the creation and management of it to another company.

4. If two platforms support the Event-Database Architecture, you can
quickly transfer the game built with the Architecture, from one platform
to another, by transferring the Game Database.

5. You can modify the Game Database using a wide variety of tools, from
in-house custom tools to off-the-shelf third-party products.

This last advantage is the most important. It follows on from the fact that the
descriptions of the data in the Game Database, to a large extent, will defne the
language of the project. And hence it should be understood by as many people
as possible. The open data format requirement provides the ultimate test of this
understanding. If the quality of the descriptions were high, then different staff using

41 The Solution

different tools will be able to modify it to effect changes in the game design. Using
the description of the data in the Game Database, and any tools which the staff
were familiar with which could interoperate with the Database through its open
data format.

It may be tempting to assume that, because the two main principles of the Event-
Database Architecture were simple or familiar (i.e. a set of Events and a Game
Database) that producing technical design based on it would be trivial. But it is not.
The natural tendency of building a technical design, using very simple principles,
is to produce complex results. The Software Evolution Process perfectly illustrates
that.

It too has two seemingly very simple principles. Let the software grow slowly
and evolve over the time. And let the basis of this evolution be feedback from the
software user. And yet, whenever you use the Software Evolution Process on a proj-
ect in the Computer Games industry that involves 60 or more staff, it produces very
complex results every time. For getting it to produce simple results is not trivial. And
that is what the Event-Database Production Process will attempt to do, with the
Event-Database Architecture, as you shall see later on.

NOTES
1. Software architecture. A description of a system for producing software. It

includes a description of the components of the system, the relationship between
these components, and the principles that govern how these components change.
See Glossary.

2. Logic branch. The point where a software procedure decides to follow one path or
another, in its overall task.

3. ID. Identifer. A word which identifes one or more set of data. In a Database, the ID of
each Record is a special Field known as the Key Field or Primary Key.

4. Software procedure. A sequence of instructions, for a computer, to perform a task. The
sequence can be used again and again to repeat that task.

5. Database. A collection of data arranged for ease and speed of search and retrieval.
6. Relational Database. A Database where all the software data, and the relationship

between these, are organised in tables with rows, known as Database Records, and
columns, known as Database Fields.

7. Database Table. A collection of Database Records. A group of related data about enti-
ties (e.g. characters, locations, or items in a Game World) which share the same proper-
ties in a Relational Database.

8. Database Record. A collection of Database Fields. A group of related data about a
single entity in a Relational Database (e.g. the name of a character in the Game World,
its location, its health, its inventory).

9. Database Field. A single property of an entity in Database (e.g. the name of a character
in the Game World). An element in a Database Record.

10. Primary Key. The frst Database Field of a Database Record that is used to identify that
Record, search for it and refer to it. This has to be a unique word or number.

11. Database Administrator. A company employee who is responsible for the design and
management of one or more Databases. The employee is also responsible for the evalu-
ation, selection and implementation of the Database management system.

12. Open data format. The description of the layout of data in a Database, and how each
data is used. This description is freely available for all software applications to use to
read and modify the Database.

42

3 The Software
Architecture

A set of Events and a Game Database by themselves would not be enough to
produce a game. A host of software modules would be required to enable these
to present a User Interface, which the player could use to interact with the game.
These modules would need to support the addition of a large number of Game
Objects, which may be added to the Event-Database Architecture, to customise
it for a particular game. The modules would need to send Events to the correct
Game Objects. And it would also be useful, but not necessary, for the modules
to provide a basic model for moving visible Objects, in the world where the game
takes place.

In the complete Event-Database Architecture, there would be seven of these
HOST MODULES, that would provide all of these services. And there would also
be an eighth one, which would control and synchronise all of these modules.

The frst two would be, of course, an EVENTS HOST and a DATABASE HOST.
The rest would be an OBJECTS HOST, a PHYSICS HOST, a GRAPHICS HOST,
a SOUNDS HOST, a GAME CONTROLLERS HOST and a CENTRAL HOST.

3.1 EVENTS HOST

The Events Host would direct all Events or chains of Events in game. For each
Event it received, it would direct the Events that should follow from it. There would
be two types of Events the Host module would direct: PRIMARY EVENTS and
SECONDARY EVENTS.

Primary Events would be the Events that the Host module received directly
from the Game Objects or the other Host modules. Secondary Events would
be the Events it sends to the Game Objects to perform Actions. Each Primary
Event would cause one or more Secondary Events or Actions. This would allow
the Game Producers, Game Designers and other staff to create and control the
chain of Events in a game. This would also allow them to re-use any Action of a
Game Object, in response to an Event, in any other Events that happened during
a game.

For example, if two different Primary Events required the same response or
Action from a Game Object, then the Game Designers could map both Primary
Events to the same Secondary Event or Action.

During the production process, it may be that two different groups of staff may
be adding two features to a game using two different Secondary Events. And it
may turn out that these two features confict with one another and overlap. That is,
both Secondary Events follow on from the same Primary Event. And instead of
removing one feature the staff want to keep both features in that chain of Events, but

DOI: 10.1201/9781003502784-3

https://doi.org/10.1201/9781003502784-3

43 The Software Architecture

mutually exclusive at the same time. That is, only one of the two should follow on
from the same Primary Event at any given time.

In these cases, each Secondary Event will have a priority that the Events
Host will use to determine which of the two Secondary Events should follow on
from that Primary Event. Secondary Events with the same priority will have
an equal chance of following on from that Primary Event. Secondary Events
with a higher priority will have a higher chance of following on from that Primary
Event.

Whatever chain of Events were generated during the history of a game, the
Events Host would add each Primary Event it received, and Secondary Events it
generated, to a history of that chain in an EVENTS HISTORY RECORD. Before
responding to that Primary Event or passing on that Secondary Event. This would
include the following Database Fields:

1. a Primary Key
2. the maximum number of different types of Events
3. the maximum length of the history of Events
4. the history of Events

This history would include all the Primary and Secondary Events in chrono-
logical order. The maximum length of the history would be determined by the needs
of the game design and the number of Events that it expects to be executed from the
beginning to the end of that game.

This history would have several advantages. These would include

1. allowing players or computers who join multiplayer games late to replay
all of the Events, since the beginning of the game, to synchronise the local
copy of the Game World with the rest of the copies on the network

2. allowing Game Objects to perform Actions in response to Events that
change depending on antecedent Events

3. allowing Game Testers to diagnose steps needed to reproduce Bugs, critical
errors or Crashes

4. allowing Game Programmers to diagnose the code executed to reproduce
Bugs, critical errors or Crashes

So long as these Bugs, critical errors or Crashes do not remove the history. This
means the Events History Record should not be reset. Even if the game was shut
down or restarted manually by a player or automatically by an error. It should only
be reset when the Game World is reset.

Each technical design, based on the Event-Database Architecture, would
strike that balance. It would defne the maximum different types of Events there
would be in the production process. It would defne the maximum length of the
history of Events that should be kept. It would defne whether the history would
contain temporal or spatial information. And it would defne whatever set of
Primary Events, Secondary Events and priorities of Events were needed to
meet the requirements of the game design. But this set would always include the

44 Event-Database Architecture for Computer Games

following standard Primary Events, which would be required by the Host mod-
ules, in chronological order:

• PRIMARY INITIAL RESET EVENT. This would be sent initially by the
CENTRAL HOST, a Host Module that sets up and synchronises all the
other Modules, after it has fnished setting these up and before the game
starts. This Event would also be sent subsequently, by any Game Object,
to restart the game from any point along its fow.

• PRIMARY CONNECT EVENT. This would be sent by the Game
Controllers Host, when a Game Controller1 was connected to the com-
puter hardware. For example, when a player joins a game.

• PRIMARY CONTROLLER MOVED EVENT. This would be sent by the
Game Controllers Host, when a device on a Game Controller started to
move. For example, when a player issued a command for the player’s char-
acter to start walking in the Game World.

• PRIMARY COLLISION EVENT. This would be sent by the Physics Host
when a Game Object was involved in a collision with another Object. For
example, when the player’s character walks into another character in the
Game World.

• PRIMARY PROXIMITY EVENT. This would be sent by the Physics Host,
when a Game Object had come within, or moved beyond, close proximity
of another Object. For example, when a player’s character walks within
close proximity or moves beyond another character.

• PRIMARY END EVENT. This would be sent by any Host Module or
Game Object whenever the playback of a recorded sequence came to an
end. For example, this would be sent by the Sounds Host, when a sound
stream2 had fnished playing a player’s character’s footsteps. Another exam-
ple, this would be sent by a Game Object when it had fnished playing an
animation sequence of the player walking. And if that sequence were part
of a longer sequence, it would mark the end of one part of the animation and
the beginning of the next.

• PRIMARY CONTROLLER STOPPED EVENT. This would be sent by
the Game Controllers Host, when a device stopped moving. For example,
when the player issued a command for the player’s character to stop walk-
ing in the Game World.

• PRIMARY CONTROLLER PRESSED EVENT. This would be sent by
the Game Controllers Host, when a button on a Game Controller was
pressed. For example, when the player issued a command for the player’s
character to start jumping in the Game World.

• PRIMARY CONTROLLER RELEASED EVENT. This would be sent by
the Game Controllers Host, when a button was released. For example,
when the player issued a command for the player’s character to stop jump-
ing in the Game World.

• PRIMARY DISCONNECT EVENT. This would be sent by the Game
Controller’s Host, when a Game Controller was disconnected. For exam-
ple, when the player left the game.

45 The Software Architecture

• PRIMARY SHUTDOWN EVENT. This would be sent only once, by
any Game Object, when it was time to exit the game. When the Events
Host received this it would shut down itself down, after executing all the
Secondary Events associated with that Primary Event.

• PRIMARY PROJECTION EVENT. This would be sent by the Graphics
Host after it selected the items that would be rendered in the Game
World. And before these items were rendered. And any Game Object
could respond to this Event and change the items being rendered on the
screen.

And it would include the following set of standard Secondary Events required
by the Host Modules:

• SECONDARY CONNECT EVENT. This would be received by a Game
Object when a device on a Game Controller was connected to the
computer.

• SECONDARY CONTROLLER MOVED EVENT. This would be received
by a Game Object when a device started to move along an axis.

• SECONDARY CONTROLLER STOPPED EVENT. This would be
received by a Game Object when a device stopped moving.

• SECONDARY CONTROLLER PRESSED EVENT. This would be
received by a Game Object when a device was pressed.

• SECONDARY CONTROLLER RELEASED EVENT. This would be
received by a Game Object when a device was released.

• SECONDARY DISCONNECT EVENT. This would be received by a
Game Object when a device was disconnected.

Of all these standard Events, the Primary Initial Reset Event would be the most
signifcant. Since this would distinguish most clearly any production process, based
on the Architecture, from a Software Evolution Process.

For, as has already been explained, during a Software Evolution Process in
the Computer Games industry, the vast majority of the game modules would
not be documented. Hence, the Game Programmers would not be aware of
how many and which game modules were involved at any point in the change
of the flow of the game. This includes the beginning and end of any stage or
level in the game. This would include the very first stage: the beginning of
the game.

The consequence of all this is that it would be impossible to reset the game, back
to its beginning, from any point along its fow, without incurring errors.

However, in the Event-Database Architecture the Primary Initial Reset Event
should do exactly that. It should reset the game back to its beginning, from any
point in the fow of the game. And you should be able to replay the game from
the beginning. If you cannot replay or repeat the game, then that means an error
has occurred and the Primary Initial Reset Event has failed. If a game based on
the Event-Database Architecture cannot pass this test, then it is not following the
Architecture.

46 Event-Database Architecture for Computer Games

The properties of the Primary Initial Reset Event, and all other Primary and
Secondary Events, would be held in the Records, of the Game Database. For each
Primary Event, this would be a PRIMARY EVENT RECORD. This would
include the following Database Fields:

1. a Primary Key
2. the list of all Secondary Events which would be sent in response to that

Primary Event.

Each Game Database would have at least two of these Records. These would
be the INITIAL RESET EVENT RECORD and the SHUTDOWN EVENT
RECORD. The former would hold a list of Secondary Events for the Initial Reset
Event. And the latter would hold those for the Shutdown Event.

For each Secondary Event, there would be a SECONDARY EVENT RECORD.
This would include at least the following Database Fields:

1. a Primary Key
2. the time delay before the Secondary Event would be sent after a Primary

Event
3. the game time3 it was due to be sent
4. the Game Object that would receive it
5. the Primary Key of another Record, containing the list of any other, pos-

sibly overlapping Secondary Events, over which it had a higher or lower
priority

6. the priority of the Secondary Event
7. a list of one or more Game Objects which caused that Event.

The Events Host would send Secondary Events to Game Objects through
the Objects Host. Each Event would either be sent immediately or after a set
time. The exact time would be defined in the properties of each Secondary
Event.

Before the Events Host sent an Event with a time delay, it would add the delay
to the current game time. It would insert the result into the Field which held the time
that the Event was due to be sent. It would then add that Event to a list. This list
would be part of a DELAYED EVENTS LIST RECORD. This would have the
following Database Fields:

1. a Primary Key
2. a list of the Keys for Secondary Events.

The list would be ordered by the game time each Secondary Event was due to
be sent.

After sending all the Events, with no time delays, the Events Host would
check the Database Table holding all the delayed Events. If the time for any
of these were due, it would be sent and removed from its Delayed Events List
Record.

47 The Software Architecture

Any set of Secondary Events which could overlap would be described by a
PRIORITY EVENTS LIST RECORD. This Record would have the following
Database Fields:

1. a Primary Key
2. an ordered list of Keys of Secondary Events, ordered by priority
3. an ordered list of priorities for each Event.

So that the priority of each Event in the frst list would be its respective number
in the second list.

Any two Secondary Events would only be considered to overlap if these occurred
in response to the same Primary Event. And these two were on the list of the same
Priority Events Record.

When a Primary Event occurred which had two or more overlapping Secondary
Events, the Events Host would add up all the priorities of all the Secondary Events. It
would then divide this total into intervals, one interval for each Secondary Event and
the size of each interval would be the size of the priority of that Event. So the size of
the frst interval is the size of the highest priority Secondary Event. And the size of the
second interval is the size of the second highest priority and so on. It would then choose
a random number between 0 and the total size of the priorities. And depending on which
interval this number fell, it would select the Secondary Event assigned to that interval
as the Event which would respond to the Primary Event. The effect would be that the
probability of a Secondary Event being selected would be proportional to the relative
size of its priority. There is a diagram showing the fow of information to and from the
Events Host in Figure 3.1 with a Legend in Figure 3.2.

3.2 DATABASE HOST

The Database Host would store and retrieve information from the Game Database.
It would allocate all the space in the computer memory required to store this
Database. And it would release this space when the game was shut down. This
Database would include the properties of all Events, all shared Game data, the
properties of all Game Objects, any Abstract data these Objects used and any
Abstract data the other seven Host modules used.

As well as a Record for each of these items, the Game Database would hold other
Records, especially for the Database Host. These Records would be for analysing
the access of data.

The frst of these would be a DATABASE MONITOR RECORD. This would
describe the set of data whose access would be monitored by the Database Host.
And the second would be a DATABASE LOG RECORD. This would contain the
details of the access to that data.

A Database Monitor Record would contain the following Database Fields:

1. a Primary Key
2. a list of Primary Keys, of the Records whose access would be monitored
3. a list of Primary Keys of Database Log Records.

48 Event-Database Architecture for Computer Games

FIGURE 3.1 The fow of information to and from the Events Host.

FIGURE 3.2 Legend of the symbols displayed in Figure 3.1. It is a list of the symbols, for
the components of the Event-Database Architecture, that would interact with the Events
Host.

49 The Software Architecture

Each monitored Record in the frst list would have a corresponding Database
Log Record in the second list. And every change in a monitored Record would be
kept in its Database Log Record.

Each Database Log Record would have the following Database Fields:

1. a Primary Key
2. a list of times the monitored Record was modifed
3. a list of the names of the modifed Fields
4. a list of the old values in each Field.

Each modifcation time in the frst list would have a corresponding entry in the
second list. And each name of a modifed Field in the second list would have a cor-
responding entry in the third list. The third list would contain the original values of
the modifed Fields before these were modifed.

When the game was shut down, the Database Host would write all Database
Log Records to a fle, next to the Game Database. This could then be
analysed, for example, to fnd out when an error occurred in the data when
playing a game.

But apart from debugging purposes, the Database Log Records would have a
direct bearing on delayed Secondary Events. Any Game Object, responding to a
Secondary Event, could use the Database Log Records to look back in time, at the
set of data which caused any of the preceding Primary Events. Even if that data
had changed by the time the Game Object responded.

This could be done if the Database Records the Game Object wanted to look
back in time at were being tracked by the Database Monitor Record. And each
tracked Record had a Database Log Record assigned to it. And the Game Object
had a Database Field with the list of the Primary Keys of these Database Log
Records. So that it could pass these Keys to the Database Host, to get the Database
Log Records and search through the timeline in the Database Log Records for the
value of the Fields in the tracked Records, at some earlier point in time.

As well as tracking modifcations to the values of Database Fields, the Database
Host would also track the computer memory it was using. The Database Host would
have a RESIDENTS LIST RECORD. This would have the following Database
Fields:

1. a Primary Key
2. an ordered list of all of the Primary Keys of Records which were currently

loaded into the computer memory, in the order these were loaded
3. a maximum length of this list

This would be used to keep track of the Database Records it had loaded into
computer memory, excluding those which were either not loaded or were stored in
the storage media holding the Game Database. Once this number exceeded the
maximum, the Database Host would unload some Records to make space for more,
using some suitable steps or algorithms. For example, unloading the oldest Records
residing in memory or the least frequently used Records.

50 Event-Database Architecture for Computer Games

The Database Host would also have an ABSENTS LIST RECORD. This would
have the following Database Fields:

1. a Primary Key
2. an ordered list of all of the Primary Keys of Records which were unloaded

from the computer memory, in the order these were unloaded
3. a maximum length of this list

This would be used to keep track of the Records which were loaded into computer
memory and were subsequently unloaded for some reason. For example, to save
space in computer memory or to write it to some temporary location in a local or
remote storage media. From which it could be fetched at a later point in time.

In summary, the Database Host would have at least seven software proce-
dures which would be used to read, write and query Records. These would do the
following:

1. get a single Record from the Game Database, when given its Primary Key,
adding it to the Residents List Record, and if the list exceeds its maximum
length, unloading the oldest Record in the list from computer memory and
adding it to the Absents List Record

2. get multiple Records, when given a list of Primary Keys
3. get multiple Records whose Fields holds values that exactly match a given

value
4. get multiple Records whose Fields holds values that match one of a set of

given values
5. get multiple Records whose Fields holds values that fall between a maxi-

mum and minimum given value
6. modify a Record in the Database, when given its Primary Key and a new

Record
7. get the previous version of a modifed Record, when given its Primary Key

and the game time before it was modifed. But only if that Record were
being tracked by the Database Monitor Record and had a Database Log
Record. Otherwise, this procedure should just get the latest version of a
modifed Record

There is a diagram showing the fow of information to and from the Database
Host in Figure 3.3 with a Legend in Figure 3.4.

3.3 OBJECTS HOST

The Objects Host would set up and direct all the game modules (or Game Objects).
It would allocate all the space in the computer memory required to load and set up
the Game Objects. And it would release this space when the game was shut down.
After allocating the space, the Objects Host would load and set each Object up with
its Record in turn. The number and order in which these would be loaded and set up
would be determined by the Game Database.

51 The Software Architecture

FIGURE 3.3 The fow of information to and from the Database Host.

This would be the OBJECTS LIST RECORD with the following Database
Fields:

1. a Primary Key
2. an ordered list of Primary Keys, of GAME OBJECT RECORDS.

FIGURE 3.4 Legend of the symbols displayed in Figure 3.3. It is a list of the symbols, for
the components of the Event-Database Architecture, that would interact with the Database
Host.

52 Event-Database Architecture for Computer Games

Each Game Object would have one Game Object Record. The Game Object
Record would have the properties of the Game Object or GAME OBJECT
ATTRIBUTES in its Database Fields. The number and type of Fields would vary
depending on the Game Object Attributes. These include physical attributes such
as the location, size, boundaries and appearance of the Game Object if visible in
the Game World. And these include its non-physical attributes such as the Events or
sounds it generates.

Whatever the Game Object Attributes were each Record would have at least the
following Database Fields:

1. a Primary Key or OBJECT ID
2. a GAME OBJECT CODE FIELD

The Object ID is an identifer of the Game Object. It is used throughout the
Event-Database Architecture to refer to that Object, either by other Game
Objects, Host Modules or Database Records.

The Game Object Code Field would control how Game Objects would respond
to Events. It is not right for a high level tool like a software architecture, such as
the Event-Database Architecture, to concern itself with low level tools, like the
machine code instructions for Game Objects. And the Game Object Code Field is
not concerned with these low level tools. It is an abstraction of a Game Object and
it can be as high level or as low level as you want.

The Game Object Code Field would either hold a unique code word or number
or name of a fle which identifes to the Objects Host which Game Object to load
into computer memory. And then pass the Primary Key of the Record to that Game
Object, for it to use to set itself up. Or the Field would hold the actual instructions,
either machine code or virtual machine code, for the Game Object. This can be in
the form of a software library that the Objects Host will load into the computer
memory. But whereas a normal software library may contain several software mod-
ules, this software library will only contain the code for one and only one software
module i.e. the Game Object.

The advantage of the Game Object Code Field only holding a code word or
number that identifes the Game Object to be loaded is that the Field will not have
to store a large amount of data. And the contents of the Field is independent of the
computer hardware. The disadvantage is that you need another external data struc-
ture that maps the code number to the instructions of the Game Object which is
outside of the Game Database. And therefore the description of that data structure
may not be the same quality as the description of the Game Database.

The advantage of the Game Object Code Field holding the actual instructions,
either machine code or virtual machine code, for the Game Object is that you do not
need an external data structure. The Objects Host can simply load the instructions
for the Game Object, from its Game Object Record, to computer memory. And
then pass the Primary Key for that Record to the Game Object. The disadvantage
is that the Field may be very large depending on the number of instructions. And
the contents of the Field is dependent on computer hardware if it is machine code,
instead of virtual machine code.

53 The Software Architecture

The advantage of the Game Object Code Field holding the name of a fle which
identifes the Game Object is that Field again does not have to store that large
amount of data. Instead the fle could contain the machine code or virtual machine
code for the Game Object that would be loaded into memory. Or the fle could con-
tain the original programming language instructions. That the Objects Host would
translate or ‘compile’ into machine code before loading it into memory. And in this
way the Objects Host would dynamically ‘compile’ and load the Game Objects
into memory as and when needed. So the game could be restarted very quickly after
changes were made to the programming language instructions of the Game Objects.
And the game need not be restarted at all if the Game Object has not been loaded
yet. Or if the Objects Host detects when the fle has been modifed and automati-
cally unloads it from memory, rebuilds or re-’compiles’ the Object and reloads it
into memory.

The disadvantage is that it would take longer for the Objects Host to ‘compile’
and load the Game Objects into memory the frst time. And the programming lan-
guage instructions have to be written to ‘compile’ on as many different computer
hardware that the game will run on. And some computer hardware may not actually
allow you to host a ‘compiler tool’ that could ‘compile’ the code.

After each Game Object had been loaded and set up with its Game Object
Record, the Objects Host would then start to direct any appropriate Events, from
the Events Host, to that Object.

The Objects Host would have one software procedure which would be used to
receive Events. The Events Host would use this procedure to provide the Objects
Host with each Secondary Event, and its Game Object (i.e. The Primary Key of
that Secondary Event and the Primary Key of that Game Object).

Each Game Object would, likewise, have one procedure which would be used
to receive Events. The Objects Host would use it to provide that Object with each
Secondary Event. When it received an Event, each Object would use one of its
other procedures to execute each Action in response, depending on its role in the
overall game design.

The Objects Host would have two other Records in the Game Database. One
would be the OBJECTS FAILED LIST RECORD. This would contain the follow-
ing Database Fields:

1. a Primary Key
2. a list of Primary Keys of Game Objects that were used to execute Actions

but failed.

Another would be OBJECTS FAILED TIMES LIST RECORD. This would
have the following Database Fields:

1. a Primary Key
2. a list of times that each Object failed when executing an Action.

Before executing an Action on a Game Object in response to an Event, the
Objects Host would add the Primary Key for that Object to the Objects Failed

54 Event-Database Architecture for Computer Games

List Record. And it would add the current time to the Objects Failed Times List
Record.

If the Action were executed successfully, then the Primary Key of that Object
would be removed from the list. And the corresponding time would be removed from
the Objects Failed Times List Record.

If the Action failed to execute, and the Objects Host had a critical error or
Crashed executing that Action, then the Object and the time would remain on those
two lists. Even when the game was restarted.

When the game was restarted after a Crash, if the Object Host received a
Secondary Event, for a Game Object that was on the Objects Failed List Record,
before the game was restarted, it will not execute any Actions on that Object.
The Objects Host will continue to ignore that Game Object, until the error that
occurred had been fxed by the Game Programmers. And they have manually edited
the Objects Failed List Record and removed the Primary Key of that Object from
the list and the corresponding time from the Object Failed Times List Record.
This means the Objects Host and the game will automatically recover from small
errors in individual Game Objects. Allowing the staff to continue to play and test
the rest of the game despite the presence of errors. And at the same time allowing
these errors to be highlighted.

To highlight failed Game Objects, to the staff, the Graphics Host will render
any 2D or 3D Game Object on that Objects Failed List Record in a special over-
laying colour. The Game Object would be rendered with a red overlaying colour, if
the game was started, after the failed Object was added to the Objects Failed List
Record. The Object would be rendered in yellow overlaying colour, if the game was
started before the Object was added to the Objects Failed List Record.

The red overlaying colour means the Object has a critical error and been dis-
abled. That is to say the Object has failed and although visible it will be ignored until
it is fxed. The yellow overlaying colour means caution. That is to say, the Object has
caused a critical failure for another player playing the game. But since the current
player started playing, before that Object failed, the current player may not experi-
ence that failure. Unless either they interact with that Object. Or they rebuild or get
the latest Game Objects and restart the game again.

The caution is necessary because the Game Database could be used by multiple
players in the same Game World, across a computer network. And other players,
who have not yet encountered a critical error with some Object, need to be warned
that they may get this error if they interact with it. Or if they rebuild or get the latest
Game Objects and restart game. However if they do not interact with that Object,
nor rebuild or get the latest Game Objects or restart the game, then they can con-
tinue playing.

There is a diagram showing the fow of information to and from the Objects Host
in Figure 3.5 with a Legend in Figure 3.6.

3.4 GRAPHICS HOST

The Graphics Host would display all 2D or 3D items on the computer screen. These
would include all texts, 2D images or 3D models.

55 The Software Architecture

FIGURE 3.5 The fow of information to and from the Objects Host.

FIGURE 3.6 Legend of the symbols displayed in Figure 3.5. It is a list of the symbols, for
the components of the Event-Database Architecture, that would interact with the Objects
Host.

56 Event-Database Architecture for Computer Games

It would require two types of Game Objects: a GRAPHICS OBJECT and a
CAMERA OBJECT.

A Graphics Object would be a Game Object of an item in the Game World that
could be rendered onto the screen.

A Camera Object would be a Game Object of a camera in the Game World,
used to direct a player’s view of that World, in a 2D or 3D space. This view would be
determined by the position, orientation and area of visibility in front of that Object
or around its position.

The Graphics Host would get all its information from Records in the Game
Database. These include

1. the list of Graphic Objects whose 2D images or 3D models would be displayed,
2. the shape of each Graphic Object,
3. the optional visible surface of each Graphic Object,
4. the optional colouring of each Graphic Object, and
5. the position and orientation of each Graphic Object.

The shape of each Object would be described by the list of vertices4 for the poly-
gons5 that make up each 2D image or 3D model.

The surface of each Object would be described by the list of Normal Vectors6 of
a 2D polygon or a 3D model. This may be used for, amongst other things, controlling
the lighting of that polygon or model.

The colouring of each Object would be described by the Textures7 (or images)
that would be used to fll its polygons. This would also require the Texture coordi-
nates8 for these polygons.

However these were described, the shape of each Object, its surface, its colour-
ing, its position and orientation would all come from one Database Record. This
would be the GRAPHICS OBJECT RECORD. The number and types of Fields
this would have would vary from game to game. But it would always have at least the
following Database Fields:

1. a Primary Key or GRAPHIC OBJECT ID
2. a Game Object Code Field
3. X Position9

4. Y Position10

5. Z Position11

6. X Angular Position12

7. Y Angular Position13

8. Z Angular Position14

9. low resolution 2D POLYGON ID or 3D MODEL ID
10. high resolution 2D Polygon ID or 3D Model ID
11. TEXTURE ID
12. TEXTURE COORDINATE ID

The Graphic Object ID would be the Primary Key of the Graphic Object
Record.

57 The Software Architecture

The 2D Polygon ID would be the Primary Key of a 2D POLYGON RECORD.
The low resolution 2D Polygon ID would be the ID of a low resolution polygon used
to defne the bounding area or bounding box around an Object. The high resolution
2D Polygon ID would be the ID of a high resolution polygon used to render that
Object.

The 3D Model ID would the Primary Key of a 3D MODEL RECORD. The low
resolution 3D Model ID would be the ID of a low resolution model used to defne a
bounding area or bounding box around an Object. The high resolution 3D Model ID
would be the ID of a high resolution model used to render that Object.

The Texture ID would be the Primary Key of a TEXTURE RECORD. The
Texture coordinate ID would be the Primary Key of a TEXTURE COORDINATE
RECORD.

The 2D Polygon Record would have the following Database Fields:

1. a Primary Key or 2D Polygon ID
2. a list of vertices of a polygon
3. a list of Normal Vectors

The 3D Model Record would have the following Database Fields:

1. a Primary Key or 3D Model ID
2. a list of triangular vertices of a 3D model
3. a list of Normal Vectors

The Texture Record would have the following Database Fields:

1. a Primary Key or Texture ID
2. a width of the Texture
3. a height of the Texture
4. a list of the colours of the pixels of the Texture

The Texture coordinate Record would have the following Database Fields:

1. a Primary Key or Texture coordinate ID
2. a list of triangular Texture coordinates

To display each Frame15 of the game, the Graphics Host will use a combination
of Software Rendering16 and Hardware Rendering.17

It would use Software Rendering to perform a quick preliminary projection of
Graphics Objects on to the screen. After that it would use some criteria to select
which of the projections will be rendered fully using Hardware Rendering.

The Graphics Objects that would be rendered would come from a GRAPHICS
LIST RECORD. This would have the following Database Fields:

1. a Primary Key or LIST ID
2. a list of Graphic Object IDs of Objects that should be displayed

58 Event-Database Architecture for Computer Games

The Software Rendering will use the Central Processor to project the bounding
box or 2D polygon or 3D model around each Graphic Object in front of the Camera
Object, from 2D or 3D Game World, to the 2D space of the screen. All bounding
boxes which were completely outside of the area of visibility or viewing frustum in
front, of the Camera Object, would be culled.

The results of these projections would be put in the Database Table of
PROJECTED SHAPES or PROJECTED SHAPES RECORDS. This would
have the following Fields:

1. a Primary Key or PROJECTION ID
2. a list of projected vertices
3. a Graphic Object ID

Each vertex in the list of projected vertices would have three coordinates:

X Position
Y Position
DEPTH COORDINATE

The X Position and Y Position would determine its 2D position on a Texture or
the screen. The Depth coordinate would determine its relative depth or distance
from the Camera Object. And whether it was displayed in front of, or behind, other
vertices with larger or smaller Depth coordinates.

After these preliminary projections, some criteria will be used to select
which Objects would go forwards to Hardware Rendering. The Primary Keys
of Projected Shapes selected to go forward would be put in a Database Table of
PROJECTED LIST or PROJECTED LIST RECORDS. This would have the
following Fields:

1. a Primary Key or List ID
2. a list of Projection IDs

The list of Projection IDs would be ordered by the distance from the
Camera Object, using the Depth coordinates. So the furthest projection or
Graphic Object would be at the beginning of the list, and the closest would be
at the end.

By default, this would be the order in which the Graphic Objects would be
rendered on a Texture or the screen by the Hardware Rendering process. And the
Hardware Rendering process must not change that order.

But, after placing the items on the Projected List, the Graphics Host would send
a Primary Projection Event. So that any Game Object that wanted to modify the
order or the content of the Projected List could do so. By attaching its Secondary
Event to that Primary Event. And modifying the order or the content of the list,
depending on the requirements of the game design, when it received that Secondary
Event.

59 The Software Architecture

After that, the Graphics Host would use the Projection IDs in the Projected
List, to get the Graphic Object IDs from Projected Shapes. And then use the
Graphic Object IDs to get

1. Texture ID
2. Texture coordinate ID
3. high resolution 2D Polygon ID or 3D Model ID
4. X Position
5. Y Position
6. Z Position
7. X Angular Position
8. Y Angular Position
9. Z Angular Position

of each Object from its Graphics Object Record. And it would project each of
these through the Camera Objects, on to a Texture or the screen using Hardware
Rendering and the Graphics Processor.

The properties of each Camera Object, in 2D space, would be held in a 2D
CAMERA OBJECT RECORD. This would have the following Database Fields:

1. a Primary Key or 2D CAMERA OBJECT ID
2. a Game Object Code Field
3. X Position
4. Y Position
5. Z Angular Position
6. visibility width around position
7. visibility height around position
8. PROJECTION TARGET FIELD
9. X Position of the centre of projection on screen

10. Y Position of the centre of projection on screen
11. projection width around centre
12. projection height around centre

The 2D Camera Object ID would be the Primary Key of the 2D Camera Object
Record.

The Projection Target Field would control whether the projection through the
Camera Object would be made either onto the screen or a Texture or nothing at all.

The properties of each Camera Object, in 3D space, would be held in a 3D
CAMERA OBJECT RECORD. This would have the following Database Fields:

1. a Primary Key or 3D CAMERA OBJECT ID
2. a Game Object Code Field
3. X Position
4. Y Position
5. Z Position
6. X Angular Position

60 Event-Database Architecture for Computer Games

7. Y Angular Position
8. Z Angular Position
9. Near focal length18

10. Far focal length
11. Field of View19

12. Projection Target Field
13. X Position of the centre of projection on screen
14. Y Position of the centre of projection on screen
15. projection width around centre
16. projection height around centre

The 3D Camera Object ID would be the Primary Key of the 3D Camera Object
Record.

There may be two or more Camera Objects. And some may be active while
others are dormant. The list of the active ones would be held in a CAMERA LIST
RECORD. In 2D space this would be part of a Database Table called 2D CAMERA
LIST. This would have the following Fields:

1. a Primary Key or List ID
2. list of 2D Camera Object IDs

In 3D space this Table would be called 3D CAMERA LIST. And this would
have the following Fields:

1. a Primary Key or List ID
2. list of 3D Camera Object IDs

Now the criteria for selecting which Objects in Projected Shapes that would
go forwards to the Projected List would typically be whether the bounding box of
Objects were obscured by the bounding box of other Objects in front of the camera.
But the criteria could be whether the projection of the bounding box of an Object
were too small to be visible on the screen. Or whether the bounding box of an Object
were partially visible on the screen. Or whether the bounding box of an Object was
completely visible on the screen. And thus cull the number of Objects rendered
using Hardware Rendering.

Besides helping Hardware Rendering, Projected Shapes along with Projected
List would also be useful for querying the order of Objects, in order to build game-
play features which involve refection, refraction or absorption of light.

For example, you could query what Objects were behind other Objects in the
line of sight of the player’s character? And refract or alter the position of the Objects
behind the translucent Objects in front to show the effect of refraction.

Another example, you could query what Objects were being refected in a mir-
ror? The surface or Texture of each mirror could be created by a projection through
a Camera Object behind that mirror. So you could query whether the player was
refecting an Object across a chain of mirrors in the Game World. Suppose the
player had to refect the sun across a chain of mirrors from one place to another in

61 The Software Architecture

the Game World. If the frst mirror were placed correctly and were refecting the sun,
then the sun would be placed in the Projection List of that mirror. And if the second
mirror were placed correctly to refect the frst mirror, then that frst mirror would
be in the Projection List of the second mirror. And so on and so on, for up to, say
seven mirrors. Therefore, to see whether the sun was being refected from the frst to
the seventh mirror, you would just simply look back through the chain of references
in the Projection List of each mirror, beginning with the seventh and ending with
the frst.

Another example, you could query what Objects were in the line of sight or
vision of Non-Player Characters or NPCs? These would simply be the Objects in
the Projection List of the Camera Object in the head of each NPC. Assuming that
Camera Object was always looking in the same direction that the NPC was facing.
And depending on the Objects on the List the NPC would attack, talk or otherwise
interact with those Objects.

Likewise, you could use the Projection List to absorb light in the NPC’s
vision. So, for example, you could have a player who had a special ability like
a black hole. The effect of which would be that the light of all Objects behind
that player were absorbed by the player. And any NPC looking towards that
player could not see anything behind that player. To do this, you would simply
remove all Objects that were behind the player’s Object in the Projection List
of the NPC’s Camera Object. And because the Objects were removed from the
Projection List, the NPC would stop attacking, talking or otherwise interacting
with those Objects.

Another example, you could query what Objects were behind the Mouse Cursor
on the screen space? Since Projected Shapes would contain the position which each
2D Object or 3D Object would occupy in the screen space, you could compare the
relative positions of Objects. You could compare the position of the Mouse Cursor
on the screen with the position of all other Objects behind it in the Projection List.
To fnd out which Objects were underneath the Mouse. And therefore which were
being selected by the Mouse and should be highlighted in a colour like yellow or
white.

In summary, the order in which Graphics Objects would be rendered through
the Camera Objects would be determined, frst, by the order in which the Graphic
Objects appeared in the 2D Graphics List or 3D Graphics List.

Second, by the order in which the Camera Objects appeared in the 2D Camera
List or 3D Camera List.

Third, by the order in which the projections of the Graphic Objects appeared in
the Projected List.

The order in the Projected List may not be the same as the order in the Graphics
List. Since the items in the Projected List is a subset of the Graphics List. And the
order in the latter is arbitrary, but the order in the former is dependent on distance
from the Camera Object. The Graphic Objects on the Projected List would be
sorted by distance from the Camera Object. The furthest away would be at the
beginning and the closest would be at the end.

Furthermore, any Game Object can customise the content of the Projected List
when it responds to the Primary Projection Event.

62 Event-Database Architecture for Computer Games

Each of these Database Tables may hold one list or Record. But these may also
hold multiple lists or Records. The 2D Graphics List or 3D Graphics List may hold
multiple lists, one for each player. The 2D Camera List or 3D Camera List may
also hold multiple lists, one for each player. And the Projected List may also hold
multiple lists, one for each Camera Object.

The Hardware Rendering process must not change the order in these Tables.
All the items visible through the frst 3D Camera Object in the 3D Camera
List should be rendered frst. And these items should be rendered in the order
in which these were listed in the Projected List. After that, all the items visible
through the second 3D Camera Object should be rendered second. And these
items should be rendered in the order in which these were listed in the Projected
List. And so on and so on. Until the Hardware Rendering process reaches the
end of the 3D Camera List. After that, it should repeat the same process for the
2D Camera List.

There is a diagram showing the fow of information to and from the Graphics
Host in Figure 3.7 with a Legend in Figure 3.8.

FIGURE 3.7 The fow of information to and from the Graphics Host.

63 The Software Architecture

FIGURE 3.8 Legend of the symbols displayed in Figure 3.7. It is a list of the symbols, for
the components of the Event-Database Architecture, that would interact with the Graphics
Host.

3.5 PHYSICS HOST

The Physics Host would provide a basic model for moving all Game Objects, in a
2D or 3D world. It would also detect collisions between the Game Objects and when
the Objects came within close proximity of one another.

The position, speed and acceleration, of each Game Object, would be updated
using simple Newtonian Physics. The acceleration would be used to update the
speed, and the speed to update the position, during each Unit of game time.

Collision between Game Objects would be detected when the volume of the
bounding shapes, around these Objects, overlapped. The bounding 2D or 3D shapes
can be defned by any 2D polygon or 3D model respectively, held in a Graphics
Object Record.

Collision would also be detected when the line of fight, of a Game Object, inter-
sected with a line or a polygon of the bounding shape, around another Object. The
line of fight would be measured from the current position, of the Object, to its next
position, given its current speed and direction.

Each Game Object that would be moved by the Physics Host would have two
other properties. These would namely be a Secondary Collision Event and a
Secondary Proximity Event. The former would be received by the Game Object,
when it was involved in a collision. The latter would be received by the Object when
it was approached (or left behind) by another.

The Physics Host would use a PRIMARY COLLISION EVENT RECORD.
This would have the following Database Fields:

1. a Primary Key
2. a list of Secondary Events of the Primary Collision Event

When any number of collisions had occurred, during a Unit of game time,
the Physics Host would prepare. It would begin by clearing all the Secondary
Collision Events, from the list of Secondary Events of the Primary Collision
Event. For each pair of Game Objects involved in a collision, it would add the
Secondary Collision Events of both, onto this list. Each Game Object would
then be added to the list of Objects which caused the Secondary Collision
Event of the other. Each one would look up its list to find out which Objects it
collided with.

64 Event-Database Architecture for Computer Games

After the Records for the Events had been updated, each colliding Object would
be placed at the point of impact. The acceleration and speed, of each Object, would
be modifed appropriately to refect the change of momentum. Finally, a Collision
Event would then be sent to the Events Host, once all the positions of the Objects
had been updated.

Proximity Events would be handled in the same manner as Collision Events.
The Physics Host would use a PRIMARY PROXIMITY EVENT RECORD.
This would have the following Database Fields:

1. a Primary Key
2. the list of Secondary Events of the Primary Proximity Event.

When any number of Game Objects came within, or moved beyond, set areas
around other Objects, the Physics Host would prepare. It would begin by clearing
the list of Secondary Events of the Primary Proximity Event. For each Object
moving within close proximity of a second Object, the Physics Host would add
the Secondary Proximity Event of the second Object, onto this list. The moving
Object would be added to the list of those which caused this Secondary Event. The
second Object would look up this list, from the Record of that Event, to fnd out
what the moving Object was. After the positions of all the Game Objects had been
updated, a Primary Proximity Event would then be sent to the Events Host.

The Physics Host would get the list of the Game Objects, which should be
moved, from the PHYSICS LIST RECORD. This would have the following
Database Fields:

1. a Primary Key
2. a list of Primary Keys of either only 2D Game Objects or only 3D Objects

The Host Module would also get the properties of each Game Object, from a
PHYSICS OBJECT RECORD and update these properties. This would have at
least the following Database Fields:

1. a Primary Key
2. a Game Object Code Field
3. a mass
4. X Position
5. Y Position
6. Z Position
7. X Speed20

8. Y Speed21

9. Z Speed22

10. X Acceleration23

11. Y Acceleration24

12. Z Acceleration25

13. X Angular Position
14. Y Angular Position

65 The Software Architecture

15. Z Angular Position
16. X Angular Speed26

17. Y Angular Speed27

18. Z Angular Speed28

19. X Angular Acceleration29

20. Y Angular Acceleration30

21. Z Angular Acceleration31

22. low resolution 2D Polygon ID or 3D Model ID of a Graphics Object
Record of the boundary around the Object used to test when a Collision
Event had occurred

23. low resolution 2D Polygon ID or 3D Model ID of a Graphics Object
Record of the boundary around the Object used to test when a Proximity
Event had occurred

24. Secondary Collision Event which the Game Object should receive
25. Secondary Proximity Events which the Game Object should receive

The movement of each Game Object would be controlled by a force of gravity
pulling it down onto a solid surface and a force of friction or viscosity resisting its
movement across a solid surface or through a liquid or through a gas or air. This
would be applied to its acceleration during each Unit of game time, while it had an
acceleration and it remained on the Physics List Record. The higher the resisting
force or acceleration the faster the Game Object will slow down and come to rest,
after a force or acceleration had been applied to it. And if the resisting force was
zero, then the Game Object will never slow down.

The force of this gravity and resistance would be enacted by the MASTER
PHYSICS OBJECT. And its properties would be held in a MASTER PHYSICS
OBJECT RECORD. This would have at least the following Database Fields:

1. a Primary Key
2. a Game Object Code Field
3. a force of gravity
4. a resisting force or acceleration across solids
5. a resisting force or acceleration through liquids
6. a resisting force or acceleration through gas

There is a diagram showing the fow of information to and from the Physics Host
in Figure 3.9 with a Legend in Figure 3.10.

3.6 SOUNDS HOST

The Sounds Host would play all the sound and music heard during a game. The list
or queue of sounds, that were waiting to be played, would come from the SOUNDS
WAITING LIST RECORD with the following Database Fields:

1. a Primary Key
2. an ordered list of Primary Keys of SOUND STREAM RECORDS

66 Event-Database Architecture for Computer Games

FIGURE 3.9 The fow of information to and from the Physics Host.

FIGURE 3.10 Legend of the symbols displayed in Figure 3.9. It is a list of the symbols,
for the components of the Event-Database Architecture, that would interact with the
Physics Host.

67 The Software Architecture

The list or queue of sounds which were being played would also come from the
SOUNDS PLAYED LIST RECORD with the following Database Fields:

1. a Primary Key
2. an ordered list of Primary Keys of Sound Stream Records

Each Sound Stream Record would have the following Database Fields:

1. a Primary Key or SOUND STREAM ID
2. the sound stream
3. its duration
4. the frequency it should be played back
5. sound channel32

6. left stereo volume
7. right stereo volume
8. SECONDARY END EVENT
9. Object ID

10. SOUND RADIUS

The Sound Stream ID would be the Primary Key of a Sound Stream
Record.

Each sound stream would require a SOUND SPEAKER OBJECT and a
SOUND MICROPHONE OBJECT to be heard. A Sound Speaker Object
would be any Game Object that could play or produce a sound. A Sound
Microphone Object would be any Game Object that can hear a sound, this
includes players.

Each sound stream would be either a short sound effect or a long piece of
music that would be heard during the game. Its Object ID would be the Primary
Key of the Sound Speaker Object whose position specified the locality of the
sound or music. Only Sound Microphone Objects in close proximity of this
Object would hear the sound. If this Game Object were not specified for a
sound stream, then all Sound Microphone Objects will hear the sound or
music.

The Sound Radius would be radius around the Game Object within which the
sound or music can be heard. Every microphone or player outside this radius will not
hear the sound or music.

The Secondary End Event would be the Event received by a Game Object,
when the sound or music had fnished playing.

The priority of this Event would also determine the priority of the stream, rela-
tive to other sound streams. The priority of all streams would be described by a
single Record: the PRIORITY END EVENTS RECORD. This would have exactly
the same Database Fields as the Priority Events Record, used by the Events Host,
to determine the relative priority of Secondary Events. Except this one would only
contain the Secondary End Events of sound streams. And it would be used to set
the relative priorities of each one.

68 Event-Database Architecture for Computer Games

Each Sound Microphone Object would have a SOUND MICROPHONE
OBJECT RECORD. The Sound Microphone Object Record would have the fol-
lowing Fields:

1. a Primary Key or SOUND MICROPHONE ID
2. Object ID
3. MICROPHONE OFFSET X FIELD
4. MICROPHONE OFFSET Y FIELD
5. MICROPHONE OFFSET Z FIELD

The Sound Microphone ID would be Primary Key of a Sound Microphone
Object Record.

The Object ID would refer to the Game Object whose position in the Game
World controls what can be heard by the player. And this would typically be the
Game Object of the player’s character. But it may be some other more remote Game
Objects like a vehicle remotely controlled by the player.

The Microphone Offset X, Y, Z Fields is a relative position, around the micro-
phone or Game Object from which the sound would be heard. This would be set
depending on the type of game being played. For example, when you play a game
from a third-person perspective, the Camera Object will be following and focused
on the player’s character. From a position which was slightly offset from the player’s
position. In that case, the microphone could also be offset by the same amount from
the player’s position.

During each Unit of game time, the Sounds Host would clear all the Secondary
End Events, from the list of Secondary Events of the Primary End Event in its
Database Record.

The Sounds Host would check the list of sounds which were being played in
the Sounds Played List Record. If a sound or music had fnished playing, then the
Sounds Host would remove it from the list. The Secondary End Event, of that
sound, would be added to the list of Secondary Events, in the Database Record of
the Primary End Event.

After all the sounds being played had been similarly checked, to see whether
these had fnished, the Sounds Host would then send the Primary End Event to the
Events Host. To signal the end of playback of all the sounds which had just ended.

The Sounds Host would then go through the list or queue of sounds streams that
were meant to be played, in the Sounds Waiting List Record. If the Game Object
for a sound stream were not within range of a Sound Microphone Object Record,
then it would not be played. And it would be removed from the list. If the Game
Object were within range of a microphone, then Primary Key of that sound stream
would be moved, from the Sounds Waiting List Record to the Sounds Playing
List Record.

Its sound stream would be loaded onto the computer hardware and played at the
appropriate frequency, volume and on the sound channel, set in its Sound Stream
Record.

When a new sound was added onto the list of sounds to be played, and its sound
channel was occupied, the Sounds Host would fnd an empty channel to play it on.

69 The Software Architecture

And before playing that new sound, the Host Module would update the Database
Field, that held its sound channel.

If all the sound channels were occupied, then the Sounds Host would fnd all
the sounds being played with a lower priority than the new sound. The Sounds Host
would stop the one with the lowest priority, add its Secondary Event to the list of
the Primary End Event and send the Primary End Event to the Events Host. The
new sound would then be played on the empty sound channel.

Any Game Object could directly add a sound to the Sounds Waiting List Record.
But only a special Game Object or MASTER SOUND SPEAKER OBJECT
should play sounds through that list. And all other Sound Speaker Objects that
wanted to play a sound should send a Secondary Event to the Master Sound
Speaker Object. Its properties would be held in a MASTER SOUND SPEAKER
OBJECT RECORD with at least the following Database Fields:

1. a Primary Key
2. a Game Object Code Field

The Master Sound Speaker Object would use SOUND SPEAKER
SECONDARY EVENTS RECORD. This would have the same Database Fields
as Secondary Events Records. Except the Game Object Field would always be the
same value i.e. the Master Sound Speaker Object. That is to say, this is a Database
Table of Secondary Events which only the Master Sound Speaker Object receives.
And there would be the following extra Database Fields:

1. a Sound Stream ID

The Sound Stream ID would be Primary Key of a Sound Stream Record con-
taining the sound streams that the Master Sound Speaker Object would play when
it received a Secondary Event.

The advantage of having all the sounds go through one Game Object and one
Database Table is that you can see all the Events and sounds played in the game in
one Table. And you can edit and control this in one Table.

There is a diagram showing the fow of information to and from the Sounds Host
in Figure 3.11 with a Legend in Figure 3.12.

3.7 GAME CONTROLLERS HOST

The Game Controllers Host would read all Game Controllers. A Game Controller
may contain any combination of analogue devices33 and digital devices.34 The
devices would form one or more groups, on the Game Controller. But no single
device would be in more than one group. For each group, the Game Controllers
Host would send a Connect Event when the Game Controller was connected and a
Disconnect Event when it was disconnected.

For analogue devices, the Controllers Host would send a Controller Moved
Event, when these started to move. And it would send a Controller Stopped Event,
when the devices stopped. For digital devices, it would send a Controller Pressed

70 Event-Database Architecture for Computer Games

FIGURE 3.11 The fow of information to and from the Sounds Host.

FIGURE 3.12 Legend of the symbols displayed in Figure 3.11. It is a list of the symbols, for
the components of the Event-Database Architecture, that would interact with the Sounds
Host.

71 The Software Architecture

Event when these were turned on. And it would send a Controller Released Event
when these were turned off.

Each group of devices, or all the devices, on a Game Controller would have one
Record in the Game Database. The details of each group would be held in this
DEVICE GROUP RECORD. The Software Developers, building a game based on
the Event-Database Architecture, would decide how many groups there would be
for each type of Game Controller. They would also decide how many types of Game
Controller they would permit, connected to the computer hardware.

The Device Group Record would have the following Database Fields:

1. a Primary Key
2. DEVICE GROUP FIELD
3. CONTROLLER TYPE FIELD
4. Object IDs

The Device Group Field would hold a list of unique words, that identifed the
analogue devices and digital devices in a group. Each digital device, or the axis of
an analogue device, would be identifed by one word. This word may be made up
of one or more characters. And this would be used by the Game Controllers Host
whenever it wanted to identify that device.

The Controller Type Field would hold the type of Game Controller these devices
belonged to. For example, these could belong to a Keyboard, a Mouse, a Gamepad,
a Touchpad, a Joystick etc.

The Object IDs would be the Primary Keys of the Database Records of the
Game Objects that the devices had been assigned to. These Game Objects could
either be 2D PLAYER OBJECTS or 3D PLAYER OBJECTS in 2D or 3D space
respectively. The properties of these Objects would be held in either 2D PLAYER
OBJECT RECORDS or 3D PLAYER OBJECT RECORDS. And each would
have at least the following Database Fields:

1. a Primary Key
2. Game Object Code Field
3. X Position
4. Y Position
5. Z Position (in 3D space only)
6. X Speed
7. Y Speed
8. Z Speed (in 3D space only)
9. X Acceleration

10. Y Acceleration
11. Z Acceleration (in 3D space only)
12. DEVICE MAPPING FIELD
13. CONTROLLER MAXIMUM FIELD
14. CONTROLLER CENTRAL FIELD
15. CONTROLLER MINIMUM FIELD
16. ANALOGUE HISTORY FIELD

72 Event-Database Architecture for Computer Games

17. ANALOGUE POSITIONS FIELD
18. DIGITAL HISTORY FIELD
19. DIGITAL POSITIONS FIELD
20. Secondary Connect Event
21. Secondary Disconnect Event
22. Secondary Controller Moved Event
23. Secondary Controller Stopped Event
24. Secondary Controller Pressed Event
25. Secondary Controller Released Event.

Any movement of the devices would be applied to the properties of all the 2D
Player Objects or 3D Player Objects, these had been assigned to. These Objects
could either do nothing and just be used to store the activity of a Game Controller.
Or these could do something more advanced, like control player characters in 2D or
3D Game World.

The Device Mapping Field would complement the Device Group Field. This
would list the names of the numerical Fields, in the Record of the Game Object,
which respectively would be changed by each device in the Device Group Field.
The Mapping Field would be used to change the effect of the movement, of the
devices on a Game Controller.

So, for example, rather than modifying the position, the movement of the devices
could be easily redirected to the speed of a Game Object instead. This would be done
by simply modifying the Device Mapping Field, from a list of the Fields for the

X Position,
Y Position and
Z Position

to a list of the Fields for the

X Speed,
Y Speed and
Z Speed.

When a device was moved, the movement would be applied to the Fields, of the
Game Object the device had been assigned to. The number of Fields modifed,
would depend on whether it was a digital device or an analogue device such as a but-
ton or a device with many axes. If it were a digital device, a button or had only one
axes, the device would only modify one Field. If it had two axes, the device would
only modify two Fields. If it had three axes, it would modify three Fields and so on.

The Fields that would be modifed would depend on the mapping of the devices
listed in the Device Group Field, to the Fields listed in the Device Mapping Field.
Each axis of an analogue device, in the Device Group Field, would have a cor-
responding entry in the Device Mapping Field. Each digital device, in the Device
Group Field, would be paired with another. Both devices in each pair would appear
consecutively in that Field. No two pairs would share the same device. Together,

73 The Software Architecture

each pair would be treated as one analogue device, with one axes. So that when one
was pressed, the analogue device would be at its highest point. And when the other
was pressed, the analogue device would be at its lowest point.

Each pair of digital devices would have a pair of corresponding entries in the
Device Mapping Field. These two numerical Fields would be modifed when the
analogue device, formed by the pair, was at its highest and lowest points respectively.

The amount these numerical Fields would be adjusted would depend on the
Controller Maximum, Controller Central and Controller Minimum Fields. The
Controller Maximum Field would hold the amount the numerical Fields should
be moved, when a device was at the highest point of its axis. And the Controller
Minimum Field would hold the amount the numerical Fields should be moved,
when the device was at the lowest point. The amount of movement would be propor-
tionally scaled between these two extremes.

For example, suppose the Controller Maximum and Controller Minimum, for
a group of analogue devices and digital devices, were 10 and −10. And an ana-
logue device were moved along an axis, from its default point, to 10% of the length
between the default and the highest point. The numerical Field assigned to that axis
would then be increased by 1. If the device were moved, subsequently, from 10% to
50% of this length, then its numerical Field would be increased by 4. Similarly, if
the frst of a pair of digital devices were pressed, then its numerical Field would be
increased by 10. And if the second device were pressed, its numerical Field would
be reduced by 10.

The Controller Central Field would hold the range of positions, about the default
position of the device, within which any movement would be ignored. This would
prevent any accidental movement, of an analogue device, from causing changes to
the game.

The Analogue History Field would keep a history of the analogue devices that
were used. It would initially contain an empty list. When each analogue device was
moved or stopped along an axis, the unique word, for that axis, would be added onto
the list. This list would have a fxed length. But it would be long enough to hold the
word, for each axis in the group, three times. When the list was full, the oldest word,
that had occurred more than twice in the list, would be removed. So that a new word
could be added.

The Analogue Positions Field would also be used to keep a history of the
analogue devices. But unlike the Analogue History Field, this Field would keep
a history of the positions of the analogue devices. Like the Analogue History
Field, it would initially contain an empty list. When each analogue device was
moved or stopped along an axis, its position on that axis would be appended onto
the list. The Analogue Positions Field would have the same fxed length as the
Analogue History Field. And when an entry was removed from the Analogue
History Field, its corresponding entry would be removed from the Analogue
Positions Field as well.

Both that Analogue History Field and the Analogue Positions Field would deter-
mine when an analogue device had moved or stopped. These Fields would also
determine how much further to adjust the numerical Field, which the device had
been assigned to, when that device was moved.

74 Event-Database Architecture for Computer Games

Using the current position, and the last position of an analogue device, would
determine when the device had moved. Using the current, the last and the last but
one position, would determine when the device had just stopped. And by subtracting
the last position, from the current position of the device, this would determine how
much the device had moved. And this would be used to adjust the numerical Field
that device had been assigned to. So that, as each device was moved about its default
position, along an axis, each numerical Field would be adjusted proportionally about
its initial value.

The Digital History Field would keep a history of the digital devices. It
would initially contain an empty list. When each digital device was pressed or
released, the unique word for that device would be appended onto the list. Just
like the Analogue History Field, the Digital History Field would have a fxed
length. But it would be, at least, long enough to hold the word, for each digital
device in the group, three times. When the list was full, the oldest word, that
had occurred more than twice in the list, would be removed. So that a new word
could be added.

The Digital Positions Field would also be used to keep a history of the digital
devices. However, unlike the Digital History Field, this Field would keep a list of
the times that each device was pressed or released. Like the Digital History Field,
it would initially contain an empty list. When each digital device was pressed or
released, the game time would be appended onto the list. The Digital Positions
Field would have the same fxed length as the Digital History Field. And when an
entry was removed from the Digital History Field, its corresponding entry would be
removed from the Digital Positions Field as well.

The Secondary Connect, Disconnect, Controller Moved, Controller
Stopped, Controller Pressed and Controller Released Event Fields would hold
Secondary Events. These Events would be received by the Game Object the
group had been assigned to. These would be received when the group had been
connected or disconnected, or one of the group had been moved, stopped, pressed
or released respectively.

During each Unit of game time, if the analogue devices or digital devices in a
group changed state, the Game Controllers Host would identify what Event had
occurred. It would decide whether the group had been connected or disconnected.
Or it would decide whether one of the group had been moved, stopped, pressed or
released. It would prepare by clearing the list of all the Secondary Events, which
were last sent for that Primary Event, from the Record of that Event.

For example, from the Record of the Primary Connect Event, it would remove
all the Secondary Connect Events on that list. And, from the Record of the Primary
Disconnect Event, it would remove all the Secondary Disconnect Events on that
list and so on.

Game Controllers Host would send the new Primary and Secondary Events
to the Events Host. And that would in turn send the Secondary Events to the
MASTER PLAYER OBJECT. This is a special Game Object that all Primary
and Secondary Events from the Game Controller Host would pass through. The
Master Player Object in turn would apply the effects of the Secondary Events to
the properties of 2D Player Objects and 3D Player Objects.

75 The Software Architecture

The Master Player Object would use the MASTER PLAYER OBJECT
RECORD with the following Database Fields:

1. a Primary Key
2. a Game Object Code Field
3. Secondary Connect Event
4. Secondary Disconnect Event
5. Secondary Controller Moved Event
6. Secondary Controller Stopped Event
7. Secondary Controller Pressed Event
8. Secondary Controller Released Event.

If the group of devices had been connected, the Game Controllers Host would
get the Secondary Connect Event, of the Master Player Object. And it would set
the cause of that Event as the Object that that group had been assigned to in the
Database Table of Device Group Records. And it would add this Event to the list
of Secondary Events, of the Primary Connect Event. And after this had been done
for all the groups of devices, the Primary Connect Event would be sent.

Similarly, if the group had been disconnected, the Controllers Host would get
the Secondary Disconnect Event, of the Master Player Object. And it would set
the cause of that Event as the Object that that group had been assigned to in the
Database Table of Device Group Records. And it would add this Event to the list
of Secondary Events, of the Primary Disconnect Event. And after this had been
done for all the groups of devices, the Primary Disconnect Event would be sent.

The same steps would be followed when an analogue device or digital device, in
the group, was moved, stopped, pressed or released. Each of these would result in the
appropriate Secondary Event being taken from the Master Player Object. And the
cause of that Event being set to the Player Object that group had been assigned to in
the Database Table of Device Group Records. And the unique word that identifes
the analogue device or digital device being added to the properties of that Event.
And it would result in that Event being added to the Record of the correspond-
ing Primary Event. And after this had been done for all the groups, that Primary
Event would be sent.

When the Master Player Object receives a Secondary Event, it forwards this
on to each of the Game Objects which are listed as the causes of that Secondary
Event. So long as each Object is not the Master Player Object itself. And when it
forwards these Events on to those Game Objects, it changes the cause of that Event
to itself.

When analogue devices were moved or stopped, the Game Controllers Host
would measure how much each device had moved. And it would add this amount
and the unique word for this axis to the properties of the Secondary Event sent to
the Master Player Object. And the Master Player Object would use the amount to
adjust the numerical Fields, assigned to the axis along which the devices had moved,
proportionally. It would then add the unique words, for this axis, onto the Analogue
History Field. And it would add the new position of the device, along this axis, onto
the Analogue Positions Field.

76 Event-Database Architecture for Computer Games

When digital devices were pressed or released, the Game Controllers Host would
decide which device had changed state. It would add the unique word for this device to the
properties of the Secondary Event sent to the Master Player Object. And the Master
Player Object would then adjust the numerical Fields assigned to that device. It would
add the unique words, for each device, onto the Digital History Field. And it would
append the game times, at which the device was used, onto the Digital Positions Field.

The Master Player Object would look at the Digital History Field and Analogue
History Field of all the 2D and 3D Players Objects. It would look for each single
word for a single device, or sequence of words for a group of devices, in the his-
tory which constituted a command or action to be performed by the player’s charac-
ter. The single word or sequence of words which constituted a command would be
defned in a DEVICE SEQUENCE PRIMARY EVENTS RECORD. This would
map each single word or sequence of words to a Primary Event for a command. The
Record would include the following Database Fields:

1. a Primary Key
2. a sequence of one or more digital devices or analogue devices that consti-

tuted a command
3. the Primary Event that should be sent when that sequence was detected in

the history of devices of a 2D or 3D Player Object.

When the Master Player Object detected a word or sequence of words for a com-
mand in the Digital History Field or Analogue History Field of a 2D or 3D Player
Object, it would send the corresponding Primary Event. And whatever Game
Objects had tied its Secondary Events to that Primary Event would respond with
whatever Actions these deemed appropriate. The Master Player Object would then
clear the sequence of words for that command just executed from the history.

The structure of the Database Records of the Primary Events sent by the Game
Controllers Host i.e.

• PRIMARY CONNECT EVENT RECORD
• PRIMARY DISCONNECT EVENT RECORD
• PRIMARY CONTROLLER MOVED EVENT RECORD
• PRIMARY CONTROLLER STOPPED EVENT RECORD
• PRIMARY CONTROLLER PRESSED EVENT RECORD
• PRIMARY CONTROLLER RELEASED EVENT RECORD

would be the same as other Primary Events. The structure of the Database Records
for the Secondary Events sent by the Game Controllers Host i.e.

• SECONDARY CONNECT EVENT RECORD
• SECONDARY DISCONNECT EVENT RECORD
• SECONDARY CONTROLLER MOVED EVENT RECORD
• SECONDARY CONTROLLER STOPPED EVENT RECORD
• SECONDARY CONTROLLER PRESSED EVENT RECORD
• SECONDARY CONTROLLER RELEASED EVENT RECORD

77 The Software Architecture

would be the same as other Secondary Events. Except it would include the follow-
ing additional Database Fields:

1. the unique word for an analogue device or digital device of the Game
Controller whose change in position along an axis or change in state caused
this Secondary Event

2. the amount of change that occurred

The Game Controllers Host would be the last of the Host modules, which the
Event-Database Architecture would use to implement a game design.

There is a diagram showing the fow of information to and from the Game
Controllers Host in Figure 3.13 with a Legend in Figure 3.14.

3.8 CENTRAL HOST

To operate, all the seven Host modules would be synchronised by a Central Host.
This would start the whole game. It would set up any software libraries, the Host

FIGURE 3.13 The fow of information to and from the Game Controllers Host.

78 Event-Database Architecture for Computer Games

FIGURE 3.14 Legend of the symbols displayed in Figure 3.13. It is a list of the symbols,
for the components of the Event-Database Architecture, that would interact with the Game
Controllers Host.

Modules and the Game Objects would use. It would also set up any computer hard-
ware these would use. After the software and hardware had been prepared, it would
start and setup all the other Host Modules, beginning with the Database Host. It
would send the Primary Initial Reset Event, to the Events Host after all the other
Host Modules had been set up successfully.

If an error occurred with a Host Module, while it was setting up, then it would
indicate this by sending a Primary Key to the Central Host. All known errors that
could occur, in the Host Modules and Game Objects, would have an ERROR
RECORD. This would have the following Database Fields:

1. a Primary Key
2. a text describing an error

The Central Host would use the Key it received, to look up the Error Record,
with the text describing the error, display the text, and log it in a computer fle next
to the Game Database.

If this were not possible because, for example, the Database Host was not set up
yet, then Central Host would simply display and log the Primary Key. Either way,
it would wait an indefnite amount of time for the error to be read. After that, the
Central Host would shut down each module, shut down the software libraries and
hardware and close the game.

With the exception of the Database Host and the Objects Host, the rest of the
Host Modules would then be managed by the Central Host, once the game started
successfully. It would periodically update each of these modules once, during each
Unit of game time. By sending it how much time had passed since the game started.
After each attempt, the Central Host would check whether any errors had occurred
when the module was updating its task, causing it to fail. The manner in which it
would detect these errors, and respond, would be the same as when it setup all the
modules.

79 The Software Architecture

If all modules were updated successfully, before the Unit time had elapsed,
then the Central Host would wait for the next period to begin. Any reasonable
amount of time could be chosen as the Unit time. But typically, most Software
Developers would choose a time dependent on how fast they wanted the computer
screen to be refreshed. This means the time between each Frame of the game
being displayed.

During each period, the Physics Host would be updated frst, followed by the
Game Controllers Host and the Events Host. The Sounds Host and the Graphics
Host would be updated last, in that order.

The Database Host would obviously only perform its task when the Game
Database was accessed. The Objects Host would only perform its task when it
received a Secondary Event.

Apart from Error Records, the Central Host would use one other Record in the
Game Database. This would be the GAME TIME RECORD. This would contain
the following Database Fields:

1. a Primary Key
2. the Unit of game time being used, when the game started
3. how much time had elapsed since the start.

The latter of these would be updated, by the Central Host, at the end of each Unit
of game time.

Finally, as previously explained, when the Events Host received a Primary
Shutdown Event, it would shut itself down. When the Central Host tries to
contact the Events Host it should get no response, and it should treat this as
any other error. That is to say, it should display and log the text describing that
error. Or if no text were available, it should display the Primary Key for that
error on the screen or write it in the logs. After that it would shut down the
remaining modules, shut down the software libraries and hardware and close
the game.

There is a diagram showing the fow of information to and from the Central Host
in Figure 3.15 with a Legend in Figure 3.16.

3.9 THE NETWORK OF THE ARCHITECTURE

All the main seven Host Modules would either send information to, or receive it
from, the Events Host or the Database Host. Most of the Host Modules would have
an Interface with both.

The Database Host would play a central part. All of the Host Modules would
either send or receive information from it. This would give Game Producers,
Designers and other staff control over the whole Architecture through the
Database.

All of the Game Objects, and some of the Host Modules, would send informa-
tion to the Events Host, but only the Objects Host would receive information from
it. This is consistent with the principles of the Architecture, as outlined in the initial

80 Event-Database Architecture for Computer Games

FIGURE 3.15 The fow of information to and from the Central Host.

description of the solution. Events would only be a means of controlling the fow of
the game; not the operation of the Architecture itself.

There is a diagram showing the fow of information to and from the Host Modules
in Figure 3.17 with a Legend in Figure 3.18. There is a table describing this informa-
tion and its origins in Table 3.1.

FIGURE 3.16 Legend of the symbols displayed in Figure 3.15. It is a list of the symbols, for
the components of the Event-Database Architecture, that would interact with the Central
Host.

81 The Software Architecture

FIGURE 3.17 The fow of information between the two core Host Modules of an Event-
Database Architecture and the peripheral Modules and back again.

FIGURE 3.18 Legend of the symbols displayed in Figure 3.17. This includes the symbols for
the Host Modules, Game Objects, Game Database, Primary Events, Secondary Events,
Database Fields and Database Records of the Event-Database Architecture.

82 Event-Database Architecture for Computer Games

TABLE 3.1
Legend of the Numbers Displayed in Figure 3.17

Data Role
1 List of that would receive each . The properties of

each Event (e.g. The delay before the Event was sent).

2 Customised Secondary Events for a particular game (e.g. A Reset Event, a Collision
Event, a Move Event etc.).

3 Properties of Game Objects, Abstract data or shared Game data.

4 List of Game Objects whose physical properties should be updated. The
properties of these Objects (e.g. position, speed, acceleration, orientation,
bounding shape etc.).

5 List of cameras whose view of the Game World should be displayed. List of Game
Objects that should be displayed. The properties of these Objects (e.g. Vertices,
Textures, Texture coordinates etc.).

6 The Game Object to update when each Game Controller was manipulated (e.g.
pressed, released, moved etc.).

7 List of sounds to be played or were being played. The properties of these sounds (e.g.
sound channel, volume, frequency, encoded sound stream etc.).

8 Primary End Event when one or more sounds had fnished playing.

9 Secondary End Events of each sound when it had fnished playing. Updated list of
sounds being played.

10 Primary Events sent when the Game Controllers were manipulated (e.g. pressed,
released, moved etc.).

11 Updated properties of Game Objects that have been assigned to a Game Controller
(e.g. new positions, Digital Group Fields etc.).

12 Projection of 2D or 3D shapes, through the 2D or 3D cameras. Updated list of
projections that would be displayed.

13 Primary Proximity and Collision Events.

14 Updated physical properties of Game Objects (e.g. position, speed, acceleration, rotation
etc.).

15 Customised Primary Events for a particular game.

16 Updated properties of Game Objects, Abstract data or shared Game data.

17 Updated properties of delayed Secondary Events and the list of delayed Events.

List of examples of the information exchanged between the Modules of an Event-Database
Architecture.

Game Objects Secondary Event

There is a diagram showing the fow of information between the staff and the
Game Database in Figure 3.19 with a Legend in Figure 3.20. There is a table
describing this information and its origins in Table 3.2.

3.9.1 SINGLE USER MONOLITHIC FORM

When you run or start your computer, it starts an Operating System.35
This is software which allows other software that you use or Software

83 The Software Architecture

FIGURE 3.19 The fow of information between the staff using the Event-Database
Architecture.

Applications36 to share the same resource. In this case, that resource is the
computer hardware i.e.

Mouse
Keyboard
Game Controllers
Screen
Storage media or Hard Disk
Computer memory
Peripherals connected such as a Printer
Network Cards
Graphics Cards
Sound Cards and so on.

FIGURE 3.20 Legend of the symbols displayed in Figure 3.19. This includes the symbols
for the staff and the Game Database.

84 Event-Database Architecture for Computer Games

TABLE 3.2
Legend of the Numbers Displayed in Figure 3.19

Data Role
1 Modifed chain of Events that would meet the latest requirements of the game design. New

Game Objects that should be added to the Game World. Old Game Objects that should be
removed. New order of Game Objects (i.e. the stage each one would appear). Modifed
properties of Game Objects (e.g. new size, position, appearance etc.).

2 New graphics and animation of Game Objects. New fonts for displaying texts. Combinations
of graphics (e.g. lighting of Game Objects, the tiling of Textures, the overlaying of Textures
etc.). Animation of Textures. New properties of graphics (e.g. Textures, overlaying colours,
shading, tone, graphical effects etc.).

3 New Game Objects that should be added to the Game World. Old Game Objects that should
be removed. New and modifed properties of Game Objects. New Events and Actions (i.e.
Secondary Events) for Game Objects. Modifed chain of Events that would meet the latest
requirements of the game design.

4 New music or sound effects for Game Objects. Combinations of sounds (e.g. which sounds
would play together on each stage of the game, which sounds would overlap, which sounds
would follow one another etc.). New and modifed properties of sound streams (e.g. volumes,
sound channels, reverberation, other effects etc.). New Secondary Events to play sounds
streams. Modifed chain of Events to play sound streams.

5 Modifed chain of Events that would meet the requirements of the test plan. Modifed
properties of Game Object to meet the requirements of test plan. Modifed properties of
Database Monitor Record, to monitor the properties of Game Objects and other Records
during the execution of test plan.

6 Corrections to entries in the Database Tables, Records or Fields. Redundant Database Tables,
Records or Fields that should be removed. New order of Records or Fields that would improve
the performance of the Database. Changes to the data which each Game Object or staff
could access. New names for Database Tables, Records or Fields.

7 Names of the various items or entities that were stored in the Game Database (hence the words
of the language of the project). Current order of all Database Tables, Records or Fields.
Overview of all the entries in the Database Tables, Records or Fields that may be corrected.

8 Overview of all the chain of Events that may be changed. Overview of all the Game Objects
that may be added or removed. Overview of all the properties of these Game Objects.
Overview of the order in which all the Game Objects would appear in the game.

9 Overview of all the graphics and animations for Game Objects. Overview of all combinations of the
graphics. Overview of all the animation of the graphics. Overview of all the properties of graphics.

10 Overview of all the Game Objects. Overview of all the chain of Events that may be changed.
Overview of all the Secondary Events that Game Objects would respond to and hence their
Actions. Overview of the properties of all Game Objects.

11 Overview of all the music and sound effects for Game Objects. Overview of all the combinations of
sound streams. Overview of all the properties of sound streams. Overview of Secondary Events
that play sound streams. Overview of chain of Events that play sound streams.

12 Overview of all the individual Events and chain of Events that could be tested. Overview of all
the properties of Game Objects that could be tested. Overview of all the Database Log
Records containing the data modifed during the execution of the test plan.

List of examples of the information exchanged with the Game Database, by the staff. So that they could
control the game and its production.

85 The Software Architecture

An example of a Software Application is a Word Processor, a Web Browser,
a Clock, a File Manager or a Computer Game built with the Event-Database
Architecture. A Software Application can come in many forms.

In its most simplest form a Software Application is contained in one fle on the
storage media or Hard Disk of the computer. And when you run or start that Software
Application it starts one Process37 in the Operating System, using that one fle. And
when that Software Application ends, or is shut down, the Process stops. This is
the monolithic form or SINGLE USER MONOLITHIC FORM of a Software
Application.

In a slightly more complex form a Software Application is contained in two or
more fles. And when you run or start the Software Application it starts two or more
Processes, in the Operating System, using those fles, one Process from each fle. Each
Process has its own independent space in computer memory. These Processes run
in parallel and communicate with each other in order act as one system. Sometimes
these Processes share the same space in computer memory and are called Threads.38

The Software User is not aware of these parallel Processes or Threads. As far as
the User is concerned the Application acts as one system. And when that Software
Application ends, or is shut down, all of the Processes or Threads stop. This is
the multi-Threaded form or SINGLE USER MULTI-THREADED FORM of a
Software Application.

A variation of this Multi-Threaded Form is another more complex form where
the Software Application again is contained within two or more fles. But the fles are
copied and distributed across two or more computers on a computer network. Since
the fles are distributed on different computers on the network, you either require two
or more Software Users to synchronize starting the Software Application on each
computer. Or one User who can start the Software Application on two or more com-
puters at the same time. Again, when they run or start the Software Application, it
starts two or more Processes on multiple Operating Systems, on multiple computers
on the network. These Processes run in parallel and communicate with each other,
across the computer network, in order to act as one system. And when that Software
Application ends, or is shut down, all of the Processes running on the computer net-
work stop. This is the distributed form or MULTI-USER DISTRIBUTED FORM
of a Software Application.

With the Event-Database Architecture you can create a Computer Game in
either the Monolithic, Multi-Threaded or Distributed Form. The Form you would
use would depend on what type of game you are creating and the computer hardware.
Some computer hardware do not have Operating Systems. Some Operating Systems
do not allow multiple Processes or Threads to run in parallel. And depending on the
Form you use, there may be additional requirements of the Host Modules.

If you were creating a single-player game then you would create it with the Event-
Database Architecture, in either a Monolithic Form or a Multi-Threaded Form.

In a Monolithic Form, one fle would contain all of code for the eight Host
Modules of the Architecture. The advantage of this form is that it is the simplest
and would not need any additional requirements of the Host Modules. And the
communication between the Host Modules will be very fast. The disadvantage of
this form is that if any one Host Module had an error or failed, then the whole

86 Event-Database Architecture for Computer Games

Architecture would fail. And the game would shut down. You would need to fx the
code, rebuild the game and restart it to continue playing.

In a Multi-Threaded Form, however, the Host Modules would require addi-
tional features. Namely, each Host Module would also be required to be able to fnd
and communicate with other Host Modules.

For example, in a Multi-Threaded Form, you could decide that each Host
Module will be in a separate fle and run in a separate Process with its own indepen-
dent space in the computer memory. In this case you would need eight fles for the
eight Host Modules. And you would need another fle, in a set location in the File
system on the storage media or Hard Disk of the computer, that all the Host Modules
have access to. Through which the Host Modules could fnd and communicate with
each other. The advantage of this method is that if any one Host Module had an
error or failed, then the whole Architecture would not fail. And you can rebuild
the Host Module that failed or restart it, to resume playing the game. The disad-
vantage of this method is that it is more complex. And the common fle which the
Host Modules share access to, and use to communicate, could be a bottleneck and a
source of problems. If you have many Processes trying to access it at the same time.

Alternatively, you could decide that each Host Module will run in a Thread,
sharing the same space in computer memory as other Host Modules running in
other Threads. The advantage of this method is that you do not need a common fle
that the Host Modules share access to, to fnd and communicate with each other.
Therefore that fle will not be a bottleneck or a source of problems.

The disadvantage of this method is that it is more complex. If any one Host
Modules failed, then the whole Architecture would fail. And you would need to
rebuild the Host Modules and restart the game. Another disadvantage is that each
Module has to be aware that it is sharing the same space in computer memory with
other Host Modules. So it should only read or write data in computer memory if
other Threads were not using that data. This is usually achieved by locking access
to that data, when reading or writing to it. And that in turn can lead to situations
called deadlocks, where all the Threads or Host Modules are waiting for some other
Thread to release access to some data.

3.9.2 MULTI-USER DISTRIBUTED CLIENT SERVER FORM

If you want to create a multi-player game, then you have to build a game with the
Event-Database Architecture in a Distributed Form.

In a Distributed Form, Each of the eight Host Modules would be contained in
one fle. And each fle would start one of the Host Modules in a separate Process in
the Operating System. And the fles would be duplicated and distributed across mul-
tiple Operating Systems on multiple computers on the local computer network in one
of two ways. Depending on whether you want one large powerful central computer
doing all the work and handling the majority of the Processes. And the rest of the
Processes being handled by smaller less powerful computers. Or whether you want
to distribute the work and Processes evenly across the computers on the network.
The former way is called a CLIENT SERVER NETWORK ARCHITECTURE.
And the latter way is a called a PEER TO PEER NETWORK ARCHITECTURE.

87 The Software Architecture

In a Client Server Network Architecture, the large powerful central computer
doing the majority of the work, and handling the majority of the Processes is called
the Server or in Computer Games a GAME SERVER. This would run the

Database Host
Events Host
Objects Host
Physics Host
Central Host

of the Event-Database Architecture.
The smaller less powerful computers doing the rest of the work, and running

the rest of the Processes are called the Clients, or in Computer Games the GAME
CLIENTS. Each player in a multi-player game plays the game through one Client.
Each Client would run its own instance of the

Graphics Host
Game Controller Host
Sound Host

When started, each of these Host Modules would connect to one or both Processes
on the Server, running the Events Host and the Database Host.

When the Graphics Host was started on the Client it would connect to the
Database Host on the Server. And start getting information about what to render on
the screen of the Client.

When the Game Controller Host was started on the Client, it would connect to the
Events Host on the Server. And send Primary Events to the Events Host as and when
the buttons or axis on the Mouse, Keyboard or Game Controllers on the Client were used.

When the Sounds Host was started on the Client, it would connect to the Event
Host and Database Host on the Server. And start getting information about what
sounds to play on the Client from the Database Host. As well as what Primary

With this Distributed Form of the Event-Database Architecture there will be
an additional requirement. Each Host Module will need to be able to connect and
send messages to other Host Modules running in Processes in Operating Systems
on other computers on the local computer network. Each Host Module will need to
be able to listen for connections from other Host Modules.

When you start each Host Module you should be able to either specify the address
of the other Host Modules, on the computers on the local computer network. That you
want to make an outgoing connection to. Or you should be able to specify the address
on the local computer that the Host Module should listen for incoming connections.

When you specify the address of a Process running on a computer you normally
specify two numbers called a TCP/IP Address39 and a Port Number.40 Therefore
when you start the Host Modules it should allow you to specify these two numbers
and whether you want the Host Module to make an outgoing connection or listen for
incoming connections.

Events to send to the Events Host.

88 Event-Database Architecture for Computer Games

But you do not have to specify this for each Host Module manually. You just need
to start the Software Application, and specify these two numbers, and the incoming
or outgoing parameter. The Software Application should automatically pass this on
to the Host Modules when it starts the Process running each Host Module.

In the Event-Database Architecture, the Central Host is the one that starts the
Software Application. It is the one that starts all the other Host Modules. So in a
Distributed Form of the Architecture, the Central Host would need to be the one
that would recognise those three parameters i.e.

1. TCP/IP Address
2. Port Number
3. outgoing or incoming

However, there can only be one instance of the Central Host in the Architecture.
Therefore if a Central Host was started with these two parameters and the ‘out-
going’ parameter, it should assume that there is another instance of the Central
Host on the computer network. And after starting the other Host Modules with
the parameters to direct them to that other computer, the Server, the Central Host
would shut down. But the other local Processes in the local Operating System run-
ning the other Host Modules on the Client would continue.

If the Central Host was started with the ‘incoming’ parameter, then that would
indicate that it was being started on the Server. And therefore it should not shut
down but continue to perform its function and control all of the other Host Modules
that make an incoming connection to the Central Host.

There are two further additional requirements for the Graphics Host, Game
Controller Host and the Sounds Host when the Event-Database Architecture is
used to create a multi-player game. These requirements come from the fact that you
need to render multiple views of the Game World to multiple players or Software
Users on the computer network. And you need to play back sounds from the Game
World from multiple viewpoints. And you need to identify and authenticate the
Game Controllers on the different computers on the computer network being used
to play the game. To ensure that there was no cheating.

Beginning with the Game Controller Host, and the Device Group Record it
uses, and the Device Group Field in that Record, this Field has to include infor-
mation for authentication. This includes authenticating the Game Controllers and
players or Software Users on the network. In a single player game, the Device Group
Field would contain a unique word identify a unique local device that the player can
use the control the game e.g. Joystick1.

But in a multi-player game, this Field should also contain one or more of these
pieces of information, separated by a colon

1. TCP/IP Address
2. Username41

3. Password42

4. Authentication Token43

89 The Software Architecture

e.g. Joystick1:192.168.0.1:Player1:Password1234:54&QA>65R,3I087-S=V]
R9#$R,S0*.

The TCP/IP Address is a word that identifes the Client or computer being used
by the player to play the game e.g. 192.168.0.1.

The Username is a name identifying a player. This can be their real name or some
pseudo name e.g. Player1.

The Password is a word that is encrypted or decrypted from a keyword that only
the player knows and always uses to log on to the game e.g. Password1234.

The Authentication Token is a word that is encrypted from a compound of the
Username and Password, that only the Software Application knows how to encrypt
and decrypt e.g. UlF1YXllOlN1bW9EaWdpdGFsSmVkaTIwMjU=

In a single player game, the Device Group Field only resides in the Device
Group Record of the Game Controllers Host. But in a multi-player game the
Device Group Field would be added to the Camera Object Record used by the
Graphics Host, and the Sound Microphone Object Record used by the Sounds
Host. To identify which Camera Object and microphone would be owned by which
Client or player on the computer network. And to show only the Game Objects that
can be seen by that Camera Object or play the sounds that can be heard by that
microphone, owned by that Client or player.

When you start the Host Modules on the Client, i.e. the Graphics Host, Game
Controllers Host and the Sounds Host, you would pass either these three pieces of
information in the parameters i.e.

1. TCP/IP Address
2. Username
3. Password

Or you would pass these two pieces of information in the parameters i.e.

1. TCP/IP Address
2. Authentication Token

And the Host Modules would in turn pass it on to the Events Host and the
Database Host on the Server when a connection was made. And the Host Modules
on the Server would search the Game Database for the Device Group Record,
Camera Record or Sound Microphone Object Record that contained these pieces
of information in its Device Group Field.

If a matching Field were not found, then the connection would be denied. If a
matching Field were found, then the connection would be accepted. And the remote
Graphics Host would identify the Camera Record it should use to display the
Game World to the player with this Device Group Field. And the remote Game
Controllers Host would identify the Device Group Record it should use to control
the player’s character with the same Device Group Field. And the Sounds Host
would identify the Microphone Object Record it should use to play back sounds to
the player with the same Device Group Field.

90 Event-Database Architecture for Computer Games

Whether you choose to include all four pieces of information, three, two or just
one in the Device Group Field, will depend on the level of security you want. It
may be benefcial, while a game was being developed, to have a low level of secu-
rity. And just use the TCP/IP Address of the Client for authentication. And later
on during the production process, when a game was about to be released, switch to
a high level of security and use all four. Since these four pieces of information will
have to be specifed every time in the parameters used to start the Host Modules
on the Clients.

One advantage of this system is that two players using two Clients on the com-
puter network, can connect to the Server with a Game Controller Hosts, using the
same authentication information, and control the same Device Group Record. And
that in turn means they can control the same Player Object Record referred to by
the Device Group Record. And that in turn means they can control the same Player
Object or player’s character in the Game World.

This may seem counterintuitive at frst. You may think that only one player
should be able to control one Player Object in the Game World. But imagine a game
where the Player Object was a large complex vehicle, which was so complex that
it required multiple players to control it. Like a space ship, or naval ship, or a large
robot. In that case having two players, on two Clients on the network, control the
same Player Object would make sense.

Another advantage of this system is that two players using two Clients,
can connect to the Server with a Graphics Host, with the same authentica-
tion information and use the same Camera Object Record. And that in turn
means that the two Clients or players will see the same Game World on their
screen.

Again this may seem counterintuitive at frst. You may think that only one player
should be able to see the view of the Game World through one player’s character
or Game Camera. But imagine a game where you want other players to be able to
spectate and see the Game World through eyes of a player participating in the game.
Many commercial game-engines already have this feature.

But with these game-engines you have to explicitly add a new Game Object
which will act as a spectator. And the process for doing this is as long and as complex
as adding a Game Object for a normal player, including writing new code. Whereas
with the Event-Database Architecture you can implicitly spectate the game, with-
out having to add a new Game Object or write new code.

Another advantage of this system is that one player using two Clients can
connect to the Server with a Sounds Host, and with two different authentication
information, that use two different Sound Microphone Object Records. And
that in turn means the two Clients will hear the Game World from two view-
points. If the two Sound Microphone Object Records were attached to the same
Player Object, but with different offsets around that player, then that player will
hear true stereophonic sound coming from the two Clients. As the player’s char-
acter moved through the Game World. And you can use this technique to increase
the number of microphones around the player’s character, from two, to four, to
fve. At which point the player will be hearing true quadraphonic or surround
sound, from the four or fve Clients.

91 The Software Architecture

3.9.3 MULTI-USER DISTRIBUTED PEER TO PEER FORM

As explained in the previous chapter, a Client Server Network Architecture is very
similar to a Peer to Peer Network Architecture. The difference is that in a Client
Server Network Architecture the majority of the Processes doing the work, of a
Software Application, are on one large central computer called the Server. And the
rest of the Processes doing the lesser work are on multiple less powerful computers
called the Clients. In a Peer to Peer Network Architecture, the Processes are all
distributed evenly across all the computers on the local computer network which are
equally as powerful. Each of these computers is called a Peer or in Computer Games
a GAME PEER. Each player plays the game through one Peer.

So likewise, the Distributed Form of the Event-Database Architecture in a
Peer to Peer Network Architecture is very similar to the Form for a Client Server
Network Architecture. And the additional requirements of the Host Modules is
very similar to the requirements for a Client Server Network Architecture. There
are fve major differences.

The frst major difference is that instead of one computer, the Server, running
the Processes of fve Host Modules and the Clients running the Processes of three
Host Modules, in the Peer to Peer Network Architecture, all the Peers would be
running the Processes of seven Host Modules. Each computer would be running its
own instance of

Database Host
Events Host
Objects Host
Physics Host
Graphics Host
Game Controller Host
Sounds Host

The second major difference is that one special Peer would be running in
addition to these seven Host Modules its own permanent instance of the Central
Host.

This would be one and only instance of the Central Host on the computer net-
work. That would synchronise the operation of all the other Host Modules on the
network. All the other Peers would have a temporary Central Host, that would only
be used to start the other Host Modules on that Peer. With the parameters required
to connect them to the permanent Central Host on the special Peer. But after that
this temporary Central Host would shut down. Leaving only the Process of the
permanent Central Host on the special Peer running.

The third major difference is that when started each Host Module on each Peer
would connect to the instance of the Database Host and Events Host on the local
computer. Instead of connecting to the instances on a remote computer.

The fourth major difference is that each Host Module would also connect to the
permanent Central Host on the special Peer. That would send messages to the Host
Modules on the network to synchronise their operation.

92 Event-Database Architecture for Computer Games

The ffth major difference is that when each instance of the Events Host received
an Event, it would send it to the Central Host on the special Peer. And that Central
Host would send that Event to all other instances of Events Host on all the other
Peers. So that the Event would be replicated on all the Peers on the computer net-
work. And thus synchronise the Game Worlds being modelled on all of the Peers.

There are at least two problems with this system that can affect the synchronisa-
tion of the Game Worlds. The frst problem is that the effect of an Event may not be
deterministic. That is to say, an Event being received by an instance of the Events
Host, on one computer, may not necessarily produce the same effect on the Game
Database as the same Event being received by another instance of the Events Host
on another computer. It could be, for example, that Event causes a random number
to be added to a Field or a random Database Record in the Game Database to be
modifed. Or it could be that Event causes a random Game Object to appear in the
Game World.

The second problem is that when a new player joins the Game World late, with a
new Peer, all of the Events that were received by the Peers since the game began has
to be replayed for the new Peer.

These two problems are not unique to the Event-Database Architecture. Many
commercial game-engines face the same problems because these use a Peer to
Peer Network Architecture. Even though the authors of the game-engines use the
terminology of a Client Server Network Architecture which makes the matter
confusing.

One common solution to the frst problem is to ensure that the effect of Events on
the Game Database is not random but deterministic i.e. predictable. By, for example,
making sure that all the Peers start with the same value or RANDOM SEED when
generating random numbers. Random numbers are generated in computers using a
value and a mathematical formula to generate pseudo random numbers. When you
pass the value into the formula the result is a pseudo random number. And when
you pass this pseudo random number back into the formula you get another pseudo
random number and so on and so on. So long as you start generating pseudo random
numbers from the same value, or Random Seed, the sequence of random numbers
from the formula will always be the same i.e. predictable.

Another common solution to the second problem is for the Events Host to replay
all of the Events in the Events History Record on a new Peer, that connects to the
Central Host. To get the Game World on that new Peer up-to-date and synchronised
with the rest of the Game Worlds on the network. But this can take a long time if the
queue of Events is very long.

Another solution to the second problem is for the Central Host to just syn-
chronise the Game Database on the new Peer that connects to it. By sending
all of the changes to its local copy of the Game Database, to the Database
Host of the new Peer. This too can take a long time if there have been a lot of
changes.

Another solution to the second problem is for the Central Host to synchronise
the Game Database on the new Peer by only sending a select minimum number
of changed Records or Fields to the new Database Host. The Database Records
or Fields selected would be chosen by some rule set by the Game Programmers

93 The Software Architecture

and Database Administrators. To only include the minimum number of important
Records required to achieve synchronisation.

For example, you could have a rule that only the Database Records of Game
Objects close to the new player should be synchronised in the new Game Database.
All of the Database Records of Game Objects that were far away from the new
player should be ignored. Or you could have a rule that only the Database Records
or Fields that had a special tag or word associated them, would be replicated.

For example, you could have a Database Meta Data Records or DATABASE
TAG RECORDS which tag other Records with words which give them special
properties. Such as the ability to be replicated across a computer network. You would
use these Database Tag Records to ensure that only Game Objects whose physical
properties were being updated in the Game World by the Physics Host were repli-
cated. But the Database Record of the Camera Objects being used to display the
Game World were not replicated. Since the view of the Game World should be dif-
ferent for each player but the Game Objects in the Game World should not. There is
an example of a Database Table that would list external Database Records (outside
of that Table) that would be replicated in the Game Database across the network in
Table 3.3. This includes examples of the external Database Records being referred
to in the Database Table.

Another example you could have a rule that the Database Tag Records would
list all the Database Fields in a Record that should be replicated. You would use
this to ensure that only the position, and not the speed or acceleration, of Game
Objects were replicated across a computer network. To ensure synchronisation of

TABLE 3.3
Example of How Database Records Could Be Tagged to Be or Not to Be
Replicated across a Computer Network

List ID Replicated
Replication Tag List 3D Physics List, Warrior 3D Player Object, Thief 3D Player Object,

Forest Sector Object, Forest Tree Object 1, Forest Tree Object 2,
Forest Tree Object 3, Small Bush Object 1, Small Bush Object 2,
Large Boulder Object, Sky Object.

List ID Non-Replicated
Non-Replication Tag List 3D Camera List, Side View Camera Object, Game Logo Camera

Object.

List ID 3D Point Object IDs
3D Physics List Warrior 3D Player Object, Thief 3D Player Object, Forest Sector

Object, Forest Tree Object 1, Forest Tree Object 2, Forest Tree Object
3, Small Bush Object 1, Small Bush Object 2, Large Boulder Object,
Sky Object.

List ID 3D Camera Object IDs
3D Cameras List Side View Camera Object, Game Logo Camera Object.

94 Event-Database Architecture for Computer Games

those Game Objects in the Game World. There is an example of a Database Table
that would list external Database Fields (outside of that Table) that would be repli-
cated in the Game Database across the network in Table 3.4. This includes examples
of the external Database Fields being referred to in the Database Table.

These tags would be manually placed by the Game Programmers, Game
Designers, Sound Designers or Engineers or Database Administrators. Depending
on the data they believed should be replicated across the network.

All these solutions depend on the data between transmitted between the comput-
ers or Peers in the Peer-to-Peer Network being reliable or compensatory. That is

TABLE 3.4
Example of How Database Fields Could Be Tagged to Be or Not to Be
Replicated across a Computer Network

List ID Replicated Fields
Replication Tag List Warrior 2D Player Object, Thief 2D Player Object., X, Y, Angular Position

Mage 2D Player Object, Cleric 2D Player Object

List ID Non-Replicated Fields
Non-Replication Warrior 2D Player Object, Thief 2D X Speed, Y Speed, X Accel., Y
Tag List Player Object., Mage 2D Player Object, Accel., Angular Speed, Angular

Cleric 2D Player Object Accel

Object ID Game Object Code Mass X Y X Speed Y Speed
Warrior 2D Player Object Warrior 2D Player Code 100 320 240 0 0

Thief 2D Player Object Thief 2D Player Code 90 90 51 0 0

Mage 2D Player Object Mage 2D Player Code 80 121 128 0 0

Cleric 2D Player Object Cleric 2D Player Code 50 192 200 0 0

Angular Angular Speed
Object ID X Accel. Y Accel. Position (Deg.) (Deg./Sec.)
Warrior 2D Player Object 0 0 0 0

Thief 2D Player Object 0 0 0 0

Mage 2D Player Object 0 0 0 0

Cleric 2D Player Object 0 0 0 0

Angular Accel. Collision Proximity Collision
Object ID (Deg./Sec./Sec.) Boundary ID Boundary ID Event ID
Warrior 2D Player 0 Warrior 2D Low Warrior 2D Low Warrior Collis.
Object Res. Polygon Res. Polygon Event

Thief 2D Player 0 Thief 2D Low Res. Thief 2D Low Thief Collis.
Object Polygon Res. Polygon Event

Mage 2D Player 0 Mage 2D Low Mage 2D Low Mage Collis.
Object Res. Polygon Res. Polygon Event

Cleric 2D Player 0 Cleric 2D Low Cleric 2D Low Cleric Collis.
Object Res. Polygon Res. Polygon Event

95 The Software Architecture

to say when an Event, or the properties of Game Objects or Database Fields, was
replicated across the network, there was either no loss of data or packets contain-
ing the Events or properties or Database Fields to be replicated, from the Central
Host to the Events Hosts or the Database Hosts on the network. And the Central
Host receives confrmation for every packet it sends out. Or if there were a loss, then
the Central Host automatically re-transmits the packets lost. Or the Central Host
compensates for the loss, by transmitting later packets that contain the accumulation
of all prior Events or changes to properties or Database Fields. And synchronise the
Game World on the Peers to the latest state.

These solutions are used in most commercial game-engines in the Computer
Games industry. But these do not have the advantage that the Event-Database
Architecture has which is that it is based on a Relational Database and a Relational
Database Management System44 that the Database Host uses to control access
to that Database. Some Relational Database Management Systems come in a
Distributed Form. So they automatically allow multiple Users to synchronise cop-
ies of a Relational Database across a computer network. If you use one of these
Systems to build your Database Hosts, then you would not need to come up with
your own solution to the problem of synchronising the Game Database across the
computer network. The Relational Database Management System will do this auto-
matically for you.

Another advantage that the Event-Database Architecture has over these com-
mercial game-engines is that it comes in a Multi-User Distributed Form based
on a Client Server Network Architecture. As explained earlier, the commercial
game-engines actually implement a Peer-to-Peer Network Architecture and use
the terminology of a Client Server Network Architecture when describing the
results. Even though they have not really implemented that Network Architecture.
There have been attempts by third-party Software Developers to recreate these
game-engines with a real Client Server Network Architecture. But these have not
been successful or widely adopted.

NOTES
1. Game Controller. A device used to control the User Interface, including the player and

other characters, of a game.
2. Sound stream. A recorded sample of sound encoded in a special data format.
3. Game time. The number of seconds since a game was started.
4. Vertices. The point at which two or more sides of a shape meet. Three vertices are used

to form triangles, which make up a 3D model. Four vertices are used to form a quadri-
lateral, which marks the position of a rectangular 2D image.

5. Polygon. A closed plane shape, with three or more sides. Triangles are used to make up
a 3D model. Quadrilaterals are used to mark the position of a rectangular 2D image.

6. Vector. The magnitude and direction of a physical quantity e.g. force, speed etc. Nor-
mal Vector. A Vector with a magnitude of 1 that simply specifes the direction in which
a 2D or 3D surface is facing. See Glossary.

7. Texture. A 2D image which is used to fll in a polygon. Only the region of the image
specifed by the Texture coordinates, of the polygon, is used to fll it in.

8. Texture coordinates. A set of points describing the region of an image which should
be used to fll in a polygon. There are the same numbers of points as there are vertices
in the polygon. Each point corresponds to one, unique vertex.

96 Event-Database Architecture for Computer Games

9. X Position. The position of a body along the X axis in a 2D or 3D space.
10. Y Position. The position of a body along the Y axis in a 2D or 3D space.
11. Z Position. The position of a body along the Z axis in a 2D or 3D space.
12. X Angular Position. The rotation of a body, in a local 2D or 3D space with an origin

at its centre of mass, around the X axis, in a plane perpendicular to the axis or the ZY
plane.

13. Y Angular Position. The rotation of a body, in a local 2D or 3D space with an origin
at its centre of mass, around the Y axis, in a plane perpendicular to the axis or the ZX
plane.

14. Z Angular Position. The rotation of a body, in a local 2D or 3D space with an origin
at its centre of mass, around the Z axis, in a plane perpendicular to the axis or the XY
plane. In 2D space the Z axis does not exist and it’s just an imaginary axis extending
out from the 2D plane.

15. Frame. A single image in an animated sequence. A single image of an animated world.
16. Software Rendering. Rendering items in 2D or 3D space using a Central Processor and

main memory in a computer system.
17. Hardware Rendering. Rendering items in 2D or 3D space using a specialised Graphics

Processor and Graphics memory in a computer system.
18. Near and Far focal length. The closest and furthest distance of the visible area or

volume in front of a camera.
19. Field of View. The angle between the left hand side and the right hand side of the vis-

ible area or volume in front of a camera.
20. X Speed. The speed of a body along the X axis in 2D or 3D space.
21. Y Speed. The speed of a body along the Y axis in 2D or 3D space.
22. Z Speed. The speed of a body along the Z axis in 3D space.
23. X Acceleration. The acceleration of a body along the X axis in 2D or 3D space.
24. Y Acceleration. The acceleration of a body along the Y axis in 2D or 3D space.
25. Z Acceleration. The acceleration of a body along the Z axis in 3D space.
26. X Angular Speed. The rotational speed of a body around the X axis in 3D space.
27. Y Angular Speed. The rotational speed of a body around the Y axis in 3D space.
28. Z Angular Speed. The rotational speed of a body around the Z axis in 2D or 3D space.
29. X Angular Acceleration. The rotational acceleration of a body around the X axis in 3D

space.
30. Y Angular Acceleration. The rotational acceleration of a body around the Y axis in 3D

space.
31. Z Angular Acceleration. The rotational acceleration of a body around the Z axis in 2D

or 3D space.
32. Sound channel. A component of computer generated sound, which can play back a

sound (given the sound envelope, i.e. the shape of the sound wave, or a sound stream)
independently, or mixed with other sound channels.

33. Analogue device. A device which produces data that measures a continuously variable,
physical quantity e.g. The rotation of a Joystick about its X, Y or Z axes, the pressure
applied to a button.

34. Digital device. A device which produces data that measures a binary, physical quantity
e.g. A Joystick being moved to the left or right, a button being pressed or released.

35. Operating System. A software that controls how other software share resources on the
same computer hardware.

36. Software Application. A software program that is used directly by a Software User,
through a User Interface, to solve a problem.

37. Process (in an Operating System). A software program or routine that is running in its
own space in computer memory. When it is part of an Operating System or Software
Application, the System or Application can temporarily interrupt it, to allow other Pro-
cesses to share the resources on the computer hardware. Before the Process is resumed.

38. Thread (in an Operating System). A sub Process generated from another Operating
System Process which shares the same space in computer memory as its parent. This
simplifes and speeds up the communication between the two Processes.

97 The Software Architecture

39. TCP/IP Address. Transmission Control Protocol or Internet Protocol Address is a
unique word, normally made up of 4 numbers separated by dots, used to identify the
source or destination of a message, being sent between two computers on a network.

40. Port Number. A number that represents a channel through which messages can be sent
or received by a computer on a network. Several messages may be sent or received in
parallel on the different channels on the same computer.

41. Username. The unique name of a Software User used to identify that User and the
resources e.g. fles, Threads or Processes that they own in an Operating System or
Software Application.

42. Password. The unique word that only a Software User knows and uses to authenticate
their access to resources available on an Operating System or Software Application,
that they own.

43. Authentication Token. A unique encrypted word that is generated by a computer, from
a Username and Password, to authenticate that User’s access to resources available on
an Operating System or Software Application, that they own.

44. Relational Database Management System. Software that create, edit and query a
Relational Database. It normally includes a standard programming language, Struc-
tured Query Language or SQL, that allows you to query the database.

98

4 The Software
Production Process

In the Event-Database Architecture, the fow of a game would be controlled by a
series of Events. This would give the Game Producers and Designers the ability to
easily extend or modify an incomplete game design to make minor changes. Using
Events would produce a lot more game modules to manage than usual. This would
be because any software procedure, which would have had logic branches in it,
would now possibly be spread across two modules, with an Event linking the two.
All of these modules, although small and simple, would have different properties and
uses. All of this information would have to be managed.

As already mentioned, a Database Administrator would play a major role in
managing this information. Each Event and game module (or Game Object) would
have a Database Record, with its properties. From these Records, the Administrator
would know something about the use of each. Any documentation the Administrator
kept, about the Database, would be useful to people trying to modify the game.

The Game Programmers too would have a large understanding of the many
Game Objects available, since they would write each module. They would
be released from having to make minor changes to the game, when the game
design changed. They could use this opportunity to spend more time planning,
documenting and implementing major changes, using the network of Events and
Game Objects instead.

But no one Programmer, or Database Administrator, would know all that could
be possible with the set of Events and Game Objects. They would soon lose track,
especially when this set started to change and get large. Nor would all the changes in
a game design be met by any given set of Events and Objects.

The solution to these problems would be a process for producing games, which
systematically dealt with changes to a game design. Beginning with the initial design,
followed by intermediate changes and implementations, and ending with the fnal
game, the process would ensure that the same simple method was used at each stage.

One example, of such a process, could begin with the assumption that no Host
modules have been built. Instead, the Host modules, the Game Objects, the Events
and the Game Database will all be built as part of the process. The process would
follow these steps:

1. A meeting with the staff would be organised where you would announce
the game and the decision to use the Event-Database Architecture and the
Event-Database Production Process. You would give an overall vision for
the production process. You would get the staff to collectively agree on the
maximum time to investigate a task before implementing that task during
the process.

DOI: 10.1201/9781003502784-4

https://doi.org/10.1201/9781003502784-4

99 The Software Production Process

2. The Database Administrators, Game Programmers, Game Artists, Sound
Designers, Game Designers and Game Testers would produce a feasibil-
ity study. That would implement a minimal game based on the Event-
Database Architecture on the computer hardware the game was targeted
for. This may or may not include a narrow but deep cross section of the
Game World, to demonstrate its feasibility also called a ‘Vertical Slice’. The
steps of the feasibility study to build a cross section of the game are almost
exactly the same as the steps to build the whole game. The only difference
being that it only requires steps (3) to (35).

3. Investigate how long it would take to write the game design, technical
design, data design and tools design and give an estimate of how long it
would take to complete these designs based on the investigation.

4. Record when the creation of the game design, technical design, data design
and tools design started in the game design. This should be the frst entry
in the game design.

5. The Game Designers, with help from the Game Artists and Sound
Designers, would complete the rest of the game design of the whole game
or the cross section of the game, in the case of a feasibility study.

6. The Game Programmers would produce a technical design. This docu-
ment would describe the Host Modules, Game Objects and the Events
required to build the frst version of the game design, the whole game or a
cross section of the game in the case of a feasibility study. It would include
the techniques that would be used to implement the features in the game
design. This would include either an explanation of the principles of the
Event-Database Architecture or a reference to another document which
included this explanation. But the technical design would not include the
data or the tools that were to be used.

7. The Database Administrator would produce a data design.1 This would
be written after consultation with the Game Programmers, Game Artists,
Game Designers, Sound Designers and Game Testers. This would describe
all the Records that would be contained in the Game Database, and the
data contained in these Records. These would also include any data the
Host Modules, Game Objects or Events required. It would include a
description of the data produced by the software tools that were to be used.
But it would not include a description of the tools.

8. The Game Programmers, with help from the Game Artists, Sound
Designers, Game Designers, Game Testers and Database Administrator,
would produce a tools design.2 This would describe all the third-party and
custom tools, including the RDBMS, that they would require to create and
manage all the data and Game Database described in the data design. It
would also include the tools that would be used to write and build the game
and the custom tools. And it would include any software repositories to
archive the computer fles used to build each version of the game or custom
tools.

9. Record when the creation of the game design, technical design, data design
and tools design ended.

100 Event-Database Architecture for Computer Games

10. Investigate the steps required to build or purchase the third party or custom
tools described in the tools design and give an estimate of how long it would
take to based on the investigation.

11. Record the time when the building started in the game design.
12. The Game Producers, Game Programmers and Database Administrators

would build or purchase the third party or custom tools described in the
tools design.

13. Record the time when the building ended.
14. Investigate how long it would take to get or build the frst set of data

required by the Game Database and give an estimate of how long it would
take based on the investigation.

15. Record when the building began in the game design.
16. The Game Designers, Game Artists and Sound Designers would get or

build the frst set of data using the third-party or custom tools.
17. Record when the building ended in the game design.
18. The Database Administrator would investigate the steps required to build

the Game Database with the RDBMS from the frst set of data and give an
estimate of how long it would take.

19. Record the time when the building began in the game design.
20. The Database Administrator would create the Game Database. From the

frst set of data created in the preceding steps.
21. Record the time when the building ended in the game design
22. Investigate the steps it would take to build the Events Host and give an

estimate of how long it would take based on the investigation.
23. Record the time when the building of the Events Host started in the game

design.
24. Build the Events Host.
25. Record the time the building ended in the game design

Graphics Host, Sounds Host, Game Controllers Host and Central Host.
27. Investigate the steps it would take to build frst set of Game Objects which

were required by the Game Database. And give an estimate of how long it
would take based on the investigation.

28. Record the time when the building of the Game Objects started in the
game design.

29. Build the Game Objects.
30. Record the time the building ended in the game design.
31. Investigate the steps it would take to assemble the Host Modules, Game

Database and Game Objects to build the frst version of the game and give
an estimate of how long it would take based on the investigation.

32. Record when the assembly began in the game design.
33. Assemble the game.
34. Record when the assembly ended in the game design.
35. The Game Testers would test the Events of the frst version of the game.

This test would be carried out against the initial data design. And it
would simply check that all the Events produce the expected results

26. Repeat (2), (3) and (4) for the Database Host, Objects Host, Physics Host,

101 The Software Production Process

in the data design. If a Game Tester cannot tell the expected results
of an Event from its description in the data design, then either the
Event should not exist. Or its name needs to be changed. Or its descrip-
tion needs to be changed. Otherwise the language on the project will
degenerate.

36. If a change to the game design were required, the Game Designers should
investigate with the Database Administrator and Game Programmers
whether it would be feasible to implement the change, using the current
set of Events, Game Objects, Database Tables, Database Records and
Database Fields.

37. If it were possible, the Game Designers would give an estimate of how long
it would take to make that change, based on the investigation.

38. Record the time when that change began in the game design.
39. Implement the change by editing the Database, with one of the custom

tools described in the tools design.
40. Record the time when that change was completed in the game design.
41. If the change were not possible, then the Game Designers would investi-

gate the steps required to implement the closest solution possible, using the
existing items in the Game Database, and give an estimate of how long
this would take.

42. Record the time when that change began in the game design.
43. The Game Designers would implement the closest solution possible, using

the existing items in the Game Database.
44. Record the time when that change ended in the game design.
45. The Game Designers, Game Artists, Sound Designers and Game

Programmers would investigate what new Events, Game Objects and data
were required to add this new feature and give an estimate of how long
these would take to build. This would include any new additions required,
from the Host Modules, which followed the principles of the Architecture.

46. Record the time when these new additions for this new feature began in the
game design.

47. The Game Artists, Sound Designers and Game Designers would design
each new artwork, sound or other data. The Game Programmers would
write a design of each new Game Object. Or they would modify the design
of each affected Host Module to include any new additions required. These
new designs, or additions, need only to include a description of any new set
of Events, Database Tables, Records and Fields required from the Game
Database.

48. The Game Artists, Sound Designers and Game Designers would build their
new data.

49. The Database Administrator would verify that this new data did not
already exist in the Game Database and were well-defned. Before adding
their defnition to the data design, and adding that data for the new Events
and Game Objects to the Game Database. But these would all initially be
inactive. That is, no existing Game Objects or Host Modules would use
this new data.

102 Event-Database Architecture for Computer Games

50. The Game Programmers would write and build the new Game Objects.
And these would be added to the set used by the Objects Host, to respond
to the new Events. Or they would rewrite and rebuild the extended Host
Modules, if that were required.

51. The Game Testers would test each new Event, Game Object and data sep-
arately, using one of the custom tools described in the tools design. Or they
would test the additions made to each Host Module separately. These tests
would be carried out at least against the data design. This would require
a custom tool to be included in the tools design, which allowed the Game
Testers to either send any Primary or Secondary Event they chose, at any
time during the game. Or it would allow them to improvise with any Object
they chose, at any time. Or it would allow them to modify any Field they
chose, in the Game Database, at any time.

52. The Game Designers would implement the new feature required, using the
new set of Events, Objects, data or additions to the Host Modules. And
this would be done by editing the Game Database.

53. Finally, Game Testers would test the new feature.
54. Record the time when the new additions for this new feature were com-

pleted in the game design.
55. At the end of production or when a milestone was reached, after it had been

decided that there would be no more changes to the game design, the Game
Testers would go through the Database. And they would gather a list of the
Primary Events used.

56. The Game Testers would produce a list of features of the game, based on
the description of these Primary Events in the data design.

57. The Game Testers would test those features against the fnal game. And it
would simply check that all the Events produce the expected results in the
data design. If a Game Tester cannot tell the expected results of an Event from
its description in the data design, then either the Event should not exist. Or its
name needs to be changed. Or its description needs to be changed. Otherwise
the language on the project will degenerate. If the Events did not produce the
expected results, then the game would be edited using the previous steps.

Compare this production process with the Software Evolution Process used to
build Computer Games. In the worst case, this Software Evolution Process would
begin with no discernible phases at all. That is, there would be no phase involv-
ing the production of any designs. Be it a game design, technical design or other
documentation, these would simply be bypassed. Instead, the production of the game
would proceed in an ad hoc fashion, virtually instantaneously, with many overlap-
ping phases of the software production life cycle. The production of software mod-
ules by the Game Programmers, artwork by the Game Artists, sounds by the Sound
Designers and other data by other staff would all begin almost straight away.

There would be only an informal meeting between the staff where they would
be shown either some sketches of a plan; describing the main tools that were to be
used, the general theme of the game, the major lessons learnt from the last proj-
ect, which the Software Developer wanted to avoid. Or they would be shown the

103 The Software Production Process

demonstrations of a competing product, which the Software Developer wanted to
emulate. Or they would be shown a previous game made by the Software Developer
which they were going to improve upon. And after a brief verbal discussion about
the initial expectations from each of the staff, the production would begin. Indeed,
some of the staff may be left with no idea at all what their role was going to be. And
if they enquired, they would merely be given verbal reassurances that it would all
become clear at a later date.

In the best case, the Software Evolution Process would initially begin with the
same phases as the classic software production life cycle. That is, it would begin
with the frst three phases. There would be some form of an analysis of the require-
ments of the software, along with a feasibility study, a game design and a technical
design. But, after that, the process would descend, in earnest, into the same ad hoc
process as the worst case.

Therefore, there would be no phase like step (7), where all the data currently in
the game, and used by the tools, would be documented. Instead, the data would be
introduced, especially new ones with increasing frequency towards the end of pro-
duction, without any ceremony or documentation.

There would be no phase like step (8), where all the tools that were currently
being used would be documented. Some of the custom tools would be referred to,
briefy, in the technical design. But, in principle, custom tools would be introduced
into the process on demand; while the game was being built, without documentation.

Of course, there would be no phases in the Software Evolution Process involving
a Database Administrator. Instead, various members of the staff would be responsi-
ble for the data which they produced. They would each independently be responsible
for merging their data, with the rest of the Game data. And this would often result
in some of the data being incompatible with others, or replicated.

Furthermore, the Game Designers would have to interrogate these various mem-
bers of staff if they wanted to change the game design. They would have to navigate
through a maze of staff, to fnd out whether there already existed some Game data
which they could modify to add a new feature. Each of these staff would only have a
partial understanding of the Game data as a whole and would pass on each enquiry
to someone else. This trail would inevitably lead to the Game Programmers. And
they would, in turn, navigate through a maze of software modules, to see whether
any Game data or Abstract data could be deployed for the task. Since, as has already
been mentioned, these modules would be the only remotely comprehensible docu-
mentation kept up-to-date.

Despite the fact that these modules, like the Game data, would lack documenta-
tion, these computer fles would nonetheless be the de facto documentation for all
the data. These would be the only items in the Software Evolution Process which
place the Game data in context. And only after conducting such extensive investi-
gations, to uncover this context, could the Game Designers be confdent whether
certain propositions were possible by editing the Game data. However, most of the
time, they fnd this impractical. And they default on such investigations. Instead,
they would prefer to either introduce new data, at the risk of duplicating any exist-
ing data. Or they would extend the frst data which they encountered that remotely
resembled whatever they were looking for. This would be done at the risk of making

104 Event-Database Architecture for Computer Games

that data more complex, and consequently making all parts of the game dependent on
that data more complex, and because of the greater complexity, more prone to errors..

Not only the Game Designers would do this, but all the other staff who wanted
to modify the game would take similar risks. Whereas, with the Event-Database
Architecture, there would be only one table; one reference. This would be namely
the Game Database. And they could simply refer to this, rather than navigate
through the maze of items in the Software Evolution Process. They could simply go
through a single, linear path of enquiry, through the Database, from one Record to
the next. They would not have to navigate multiple paths of enquiry simultaneously;
the majority of which lead to dead ends, while others merely go around in circles.

There would be no phase in the Software Evolution Process involving the Game
Testers, prior to the end of production. The lack of documentation during the process
would mean that there would be no designs, with which they could test any features,
introduced into the game, against.

There would be no phase where the Game Designers could change any part of
the fow of the game, all the components in the game and all the properties of these
components, by editing a Database. There would be no phase where the Game
Designers would conduct each and every change to the game design. The game-
editors would allow the Game Designers to edit some components or software
modules of the game. But the ad hoc nature in which features were introduced into
the game, especially new Game data, would limit this capacity. Many components
or software modules would be added to the game which could not be edited with
the game-editor. Since those who introduced these software modules would either
feel it unwarranted, neglect to demand or have their request that the game-editors
be changed to allow you to edit these software modules refused. The frequency of
such introductions would increase towards the end of the production, as more and
more software modules are rushed through bypassing many steps of the software
production life cycle and without regard whether you can edit these modules with
a game-editor. Although the Developers of many commercial game-editors market
these on the ability of the editors to edit any game design, you can only edit some
these words are not necessary of the components of a game-design.

The steady decline in the effectiveness of the game-editors, as more software
modules were introduced which could not be edited with the game-editors, would
also mean that, towards the end, there would be no assessment of the feasibility of
making changes to the game design with the game-editors. Instead, changes would
be introduced without any assessment of its feasibility and effect on the software.
These changes would be written directly into the game, by the Game Programmers.
And there would be no attempt to assess whether these changes could have been
done with the game-editors frst.

There would be some phases of the Software Evolution Process where designs
written or drawn up by the Game Programmers, Game Artists, Sound Designers and
Game Designers would be documented. But, later on, as more and more changes
were made to the game design, these phases would disappear.

However, there would always be phases, in the Software Evolution Process,
where the Game Programmers would write game modules and build these. But,
unlike in the Event-Database Production Process, all the changes to the game

105 The Software Production Process

modules, Game data or Abstract data would be incorporated into one step. So
that these could all be tested at once, simultaneously. Whereas, in the Event-
Database Production Process, all these changes would be disabled by default.
So that each one could be tested independently. This would help prevent errors
in one of the new Events, Actions, Game Objects, Database Tables, Records
or Fields becoming confused with errors in old items in the Database, or with
each other.

Finally, the Software Evolution Process would have no phases where the Game
Testers could test features of the game against a design. At best, the Game Testers
would be instructed on what features to test by the staff who added them, and what
to look out for. Even though the staff in turn would have nothing more to back up
these instructions than their own vague memories of why they added these features.
And at worst, the Game Testers would be left to their own intuition to decide what
features to test, and what looks good and what does not.

To summarise, the Event-Database Production Process has four advantages
over a normal Software Evolution Process.

Firstly, when there is a new change to the requirements of the game design,
the Software Evolution Process produces a new set of game modules, Game data
and Abstract data to meet those requirements. The Event-Database Production
Process produces a new set of Primary Events, Secondary Events, Game Objects,
Database Tables, Database Records and Database Fields. The second set has a
greater tolerance to the changes in the game design than the frst. By virtue of its
members.

Secondly, during the production process and especially at the end, you can iden-
tify and test every member of the second set, every Primary Event, Secondary
Event, Game Object, Database Table, Database Record and Database Field. And
thus you can have greater Quality Control than in a Software Evolution Process.
This can all be done from one source and one tool: the Game Database. But you can-
not identify and test every member of the frst set, every game module, Game data
or Abstract data. In a Software Evolution Process, there is no such single source or
tool.

Thirdly, there is a book that explicitly explains the Event-Database Production
Process and the Event-Database Architecture. This is called

Event-Database Architecture for Computer Games: Volume 1, Software
Architecture and the Software Production Process.

This gives you an understanding of the software architecture at the beginning
and the end of the process. There is no book which explains the Software Evolution
Process for Computer Games and can predict the software architecture it will pro-
duce. You can only see this at the end of the process.

Fourthly, the Event-Database Production Process and the Event-Database
Architecture provide you with a Relational Database and a Relational Database
Management System for building Computer Games. To manage and query the huge
amounts of data that it takes to build and run modern Computer Games. The Software
Evolution Process does not. In a production process involving, for example, about
300 staff, this data can be over 400 gigabytes in size and involve 3.5 million fles.
The Software Evolution Process breaks down on such a scale.

106 Event-Database Architecture for Computer Games

4.1 STEP 1: FEASIBILITY STUDY/VERTICAL SLICE

The Event-Database Architecture is just a mechanism for producing software
designs and a software production process. As such it would not be dependent on
any set of tools. There are many sets of tools that could be used to build the software
designs and software production process based on it.

Before using the Architecture to produce any large software design, however,
you could build a simple design that allowed you to test the basic features of the
Architecture. This would help demonstrate the feasibility, or otherwise, of using
that Architecture on a given computer hardware. This is one of the frst steps

step (2)

of the Event-Database Production Process as described in the preceding subchap-
ter, which is a feasibility study. The object of the feasibility study is to examine both
the Event-Database Architecture and the Event-Database Production Process.
The study will involve executing the most important steps of the Event-Database
Production Process

steps (1)–(35).

The steps begin by designing a small but deep cross section of the Game World,
known as a ‘Vertical Slice’, that represents a fraction, for example 10%, of the whole
game

step (5).

And the steps end with a test of that 10% based on the Event-Database Architecture

step (35)

and a prognosis would be made about how long it would take to build the whole
game.

To make this prognosis, times are gathered in the game design, of when each sub-
task begins and ends during the Event-Database Production Process. These times
are gathered in these steps

4, 9, 11, 13, 15, 17, 19, 21, 23, 25, 28, 30, 32, 34.

And at the end, these times are used to get an overall time for how long it took to
build 10% of the whole game. And that time, in turn, is used to make a prognosis of
how long it would take to build the whole game. And that in turn is used to assess
whether it is feasible to build the game, given the deadline for the project, using the
Event-Database Architecture.

Now the smaller test of the 10% of the game is different from the bigger test of
the whole game described in the steps of the preceding subchapter. The exact nature
of this test is described in the next chapter.

107 The Software Production Process

4.1.1 DESIGNING THE TEST

A test of the Event-Database Architecture would require three sets of items. It
would require a set of computer software components to be built and assembled. It
would require a set of computer hardware components, which would use the assem-
bled software to perform the test, and allow you to interact with the game. And it
would require a set of small steps that you would follow to test the different compo-
nents of the Architecture.

The set of software components would include the Host Modules of the Event-
Database Architecture. It would also include the additional software modules (i.e.
Game Objects) that would allow you to see items in the game and interact with
these. And, fnally, it would include a Game Database that stored all the shared
Game data, and Abstract data, the software modules would use.

You would need to build all eight Host Modules for the test. The Events Host
would control the fow of the game. The Database Host would store and retrieve
all the data that would be used. The Objects Host would use the Game Objects
to respond to Events. The Physics Host would move the Game Objects around.
It would include gravitational and frictional forces, in its software model. So that
all Objects fell down onto the ground and slowly came to rest whenever these were
moved. The Graphics Host would display these Game Objects. The Sounds Host
would play any accompanying audio for the test. The Game Controllers Host would
read the position of the Game Controllers and allow you to use these to interact with
the game. And, fnally, the Central Host would be used to control and synchronise
all the other Host Modules.

Along with these modules, you would need to build eight additional software
modules in all. Three of these would be 2D Game Objects, which would be used
to display 2D images, and demonstrate the movement of 2D items. Another three
would be 3D Game Objects, which would be used to display 3D models, and dem-
onstrate the movement of 3D items. One 2D Camera Object would be required to
display the 2D items. And, fnally, one 3D Camera Object would be required to
display the 3D items.

The movement of the frst 2D Game Object would be guided by a Game
Controller. The Game Object could be any solid, arbitrary shape. But its colour
would initially be green. And it would have a circle forming a boundary around
it that would be used to detect its collision with other Objects. It would change its
colour to red each time this happened. It would appear on the screen when the digital
devices, of the Game Controller, were connected to the computer. And it would dis-
appear when the same devices were disconnected. It would move up or down, left or
right, when the analogue devices, of the Game Controller, were moved. This would
either be when one analogue device, with horizontal and vertical axes, was moved.
Or the Game Object would move, in both sets of directions, when two separate
analogue devices (e.g. a button and some other device with one axis) were moved. It
would also stop moving when these same analogue devices were stopped.

This 2D Game Object would respond differently when the digital devices, on the
Game Controller, were pressed. These devices would be fve different buttons. When
the frst button was pressed, the speed of the Game Object would be subsequently

108 Event-Database Architecture for Computer Games

affected by the movement of the analogue devices. By default, these movements
would only affect its position. When the second button was pressed, the movement of
the analogue devices would revert back to affecting its position. When the third but-
ton was pressed, the scale of this effect on its speed or position would be increased.
When the fourth button was pressed, the scale of the effect would be decreased. And,
fnally, when the ffth button was pressed, the game (i.e. the software being tested)
would shut down, after an error had been briefy displayed. This error would simply
state that the game was about to shut down, confrming the button was pressed.

The second 2D Game Object required for the test would not be directly con-
trolled. It would only move when the controlled 2D Game Object collided with it. It
also could be any solid, arbitrary shape. But its colour would be yellow. The Object
would have a trapezium acting as an invisible boundary around it that would be used
to detect its collisions. After each collision, with any Object, it would change the
colour of the controlled Game Object to blue. And it would have twice the mass of
that Object.

This Game Object would play three different sounds. When another Object
came within close proximity of it, it would play one unique sound. It would play
a second sound when the Object collided with it. And it would play a third sound,
when the second sound had fnished.

The third 2D Game Object would be used to limit the movement of the other
two Objects, during the test. It would have the shape of a hollow rectangle. It would
be predominantly transparent, except for the white outlines which would be clearly
visible along its edges. The boundary around the Object would be a rectangle, which
would defect the other two Objects back inwards, from the outer edges. It would
be large enough to contain both Objects and free space, within which these could
move. The Game Object would have a mass so large that it would not move when
the other two collided into it.

These two Game Objects would be placed next to each other within this bound-
ary, when the test began. The Objects would be close enough to each other so that
both would be seen. But, at the same time, there would be enough distance between
the two so that the Objects were not in close proximity to each other. When one of
these Objects hit the boundary, the third Game Object would food all the sound
channels with a unique sound. This sound would have a higher priority than all other
sounds used during the test.

As with the frst 2D Game Object, the movement of the frst 3D Game Object
would be guided by a Game Controller. But this second Game Controller would be
different from the one used to control the 2D Game Objects. The Game Object
would have a sphere acting as a boundary around it that would be used to detect
its collision with other Objects. The Game Object would appear when the digital
devices, of the Game Controller, were connected to the computer hardware. And it
would disappear when the same devices were disconnected.

Similar to the frst 2D Game Object, the Object would move backwards or
forwards, left or right along the foor, when the analogue devices, of the Game
Controller, were moved. This would either be when one analogue device, with hori-
zontal and vertical axes, was moved. Or the Game Object would move, in both sets
of directions, when two separate analogue devices (e.g. a button and some other

109 The Software Production Process

device with one axis) were moved. It would also stop moving when these same ana-
logue devices were stopped.

Again, like the frst 2D Game Object, the Object would respond to fve differ-
ent digital buttons, on the Game Controller, when these were pressed. When the
frst button was pressed, it would switch the effect of the movement, of the ana-
logue devices, to the speed of the Object. By default, these movements would only
affect its position. When the second button was pressed, the movement of the ana-
logue devices would switch back to affecting its position. When the third button was
pressed, the scale of this effect on its speed or position would be increased. When the
fourth button was pressed, the scale of the effect would be decreased. And, fnally,
when the ffth button was pressed the game would be shut down.

The second of the 3D Game Objects would not be directly controlled, during the
test. It would only move when the controlled 3D Game Object collided with it. The
Game Object would have a cube forming a boundary around it that would be used to
detect these collisions. The cube would have two ramps inclined against its right and
left vertical sides. These ramps would also be part of the boundary around it. And
the Game Object would have twice the mass of the controlled 3D Game Object.

The Game Object would play three sounds, just like the uncontrolled 2D Game
Object. When another Object came within close proximity of it, the Game Object
would play a sound. This would be the same sound you would hear when two 2D
Game Objects came near each other. Similarly, when it collided with another
Object, the Game Object would play another sound. This would be same sound
you would hear when two 2D Game Objects collided. And when this sound had
ended, it would play the same sound you would hear after the collision of 2D Game
Objects.

The third 3D Game Object would be used to limit the movement of the other
two 3D Game Objects, during the test. It would have the shape of a hollow cube.
It would be predominantly transparent, but with white lines clearly visible along its
edges. It would also have an opaque square foor, made up of an alternating sequence
of black and grey parallel lines. When the Object was placed in the 3D world space,
the lines along this foor would be parallel to the Z-axis. The boundary around the
Game Object would be a cube that would defect any other Object back inwards,
when these collided into one of its sides. It would be large enough to contain the
other two Game Objects and free space, within which these could move. It would
also have a mass so large that it would not move, when the smaller Game Objects
collided into it.

The smaller Game Objects would be placed within this boundary, when the test
began. As with the 2D Game Objects, both Objects would be close enough to each
other to be visible. But, at the same time, there would be enough distance between
both that the Objects were not in close proximity to each other. When an Object hit
the boundary, the third 3D Game Object would food all the sound channels with
the same sound. This would be the same sound you would hear when one of the 2D
Game Objects hit the boundary that confnes those Objects.

So that you may be able to see the two confned 2D Objects, when the test began,
the 2D Camera Object would be carefully positioned. Its initial position and area
of visibility would be such that you would see both Game Objects. But, at the same

110 Event-Database Architecture for Computer Games

time, it would not be possible for the camera to see the entire space within which
these Objects could move. This would enable you to clearly see the movement of
the camera across this space. After each collision, between these Game Objects,
the camera would reposition itself above the uncontrolled Game Object, looking
directly at it.

Similarly, the 3D Camera Object would be carefully positioned when the test
began. Its initial position and area of visibility would be such that you would see the
two confned 3D Game Objects. But, at the same time, it would not be possible for
the camera to see the entire space within which these Objects could move. After
each collision, between these Game Objects, the camera would reposition itself
above and in front of the uncontrolled 3D Game Object, looking directly at it.

The information that the Camera Object, and all other software modules, would
use to perform the test would be held in a Game Database. In total, only 86 Records
would be required in this Database, for all the modules.

The Events Host would require 27 Records. One Record would be required
for each of the 12 standard Primary Events of the Architecture. One would be
required for each Proximity Event of the three 2D Game Objects. One would be
required for each Collision Event of the three 2D Game Objects. Likewise, six
would be required for the Proximity Events and Collision Events of the 3D Game
Objects. One Record would also be required to hold the list of delayed Events.
And another Priority Events List Record would be required to decide between two
conficting Secondary Events, based on the priority of each one. For example, the
two Secondary Collision Events, of the two confned 2D Game Objects, would
both need to be assigned equal priorities. So that sometimes the colour of the con-
trolled 2D Object would turn red after a collision between the two. And sometimes,
it would turn blue after each collision. And one Events History Record would be
required to hold a history of all Events.

The Database Host would require four Records, in order to test its debugging
features. One Database Log Record would be required to hold the list of data that
would be monitored. Although several pieces of data could be monitored, for this
simple test however, there would only be one entry in the list. And that would be the
Primary Key of the Record which held the properties of the uncontrolled 3D Game
Object. Another Record would be required to keep a log of the changes to this data.
Another Record would keep a list of Records loaded into the computer memory.
Another Record would keep a list of Records unloaded from memory.

The Objects Host would require three Records. One would hold the list of Game
Objects that would be loaded into, and used, in the computer memory. One would hold
the list of Game Objects that had a critical error or Crashed when responding to an
Event. One would hold the list of times that these critical errors or Crashes occurred.

The Physics Host would only require three Records. One Record would be used
to hold a selected list of 2D Game Objects. And the other would hold a selected
list of 3D Game Objects. These Objects would be those whose position, speed
and acceleration would be updated during each Unit of game time. Another Record
would hold the properties of the Master Physics Object which are the parameters
of the physics including the strength of the force of gravity, and resistance in solids,
liquids and gas.

111 The Software Production Process

The Graphics Host would require 24 Records. Two Records would be required
to hold two 2D polygons. Another two Records would be required to hold two 3D
models. One Record would be required to hold a Texture. Another six Records would
be required to hold the six Texture coordinates for the six Game Objects. One
Record would be required to hold the list of 2D Game Objects that would be dis-
played. Another would be required to hold the list of 3D Game Objects that would
be displayed. Another six Records would be required to hold the projection of the
six Game Objects through the Cameras. Another two Records would be required
to hold the list of 2D projections and the list of 3D projections. And another two
Records would be required to hold the 2D Camera Object and the 3D Camera
Object. And another Record would be required to hold the list of Camera Objects.

The Sounds Host would require four Records. One Record would be used to
hold the list of sounds that were waiting to be played. One Record would be used
to hold the lists that were being played. One Record would hold the properties of
the Sound Microphone Object. And one Record would hold the properties of the
Master Sound Speaker Object through which all Secondary Speaker Secondary
Events would pass through.

The Game Controllers Host would require six Records. Two Device Group
Records would be required to hold the Game Objects which each group of ana-
logue devices, on the two Game Controllers, would affect. Another two Device
Group Records would be required to hold the Game Objects which each group of
digital devices, on the two Game Controllers, would affect. One Record would be
required to hold the properties of the Master Player Object that all Events related
to players would pass through. And 14 Device Sequence Primary Events Records
would be required to map the sequence of analogue devices or digital devices to
Secondary Events that would be sent through the Master Player Object.

The Central Host would require only two Records. One would be required to
hold the error displayed when the game was shut down. Another would hold the Unit
of game time that would be used to operate the game. This would also hold when the
game started and how much time had elapsed since it began.

The controlled 2D Game Object would require 12 Records. One Record would
be required to hold its Texture. Another would be required to hold its Texture coor-
dinates. Another would be required to hold the vertices of the quadrilateral that
would display its image on the screen. And yet another would be required to hold
the properties of the bounding shape that would be used to detect its collision with
other Objects. One Record would be required to hold its unique properties, includ-
ing its mass, position, speed and acceleration. One Record would be required to hold
the projection of the Game Object, through the 2D camera. And six Records would
be required to hold the properties of the Secondary Events it would receive. These
would be sent when the frst Game Controller was either connected, disconnected
or its devices were moved, stopped or pressed. And another would be sent after the
Game Object had collided with other Objects.

The uncontrolled 2D Game Object would require 13 Records in all. One
Record would be required to hold its Texture. Another would be required to
hold its Texture coordinates. Another would be required to hold the vertices
of the quadrilateral that would display its image on the screen. Another would

112 Event-Database Architecture for Computer Games

be required to hold the properties of the bounding shape that would be used to
detect its collision with other Objects. And yet another would be required to hold
the vertices and Normal Vectors of the bounding shape. One Record would be
required to hold its unique properties, such as its mass, position and speed. One
Record would be required to hold the projection of the Game Object, through
the 2D camera, onto the screen. And three Records would be required to hold the
properties of the Secondary Events it would receive. These would be sent when
either another Object came within close proximity of it, collided with it or after
the sound played during the collision had ended. A further three Records would
be required, by the Game Object, to hold the sounds it would play when each of
these Events occurred.

The hollow 2D Game Object, which would confne the other two Objects, would
require fve Records. One Record would be required to hold the properties of the
bounding shape that would be used to detect its collision with the other Objects.
Another would be required to hold the vertices and Normal Vectors of the bounding
shape. One Record would be required to hold the unique properties of the Game
Object, such as its mass and position. And one Record would be required to hold the
only Secondary Event it would receive. This would be sent when another Object
collided with it. A further Record would be required to hold the sound that it would
play when this Event occurred.

The controlled 3D Game Object would require 12 Records, just like the con-
trolled 2D Game Object. One Record would be required to hold its Texture. Another
would be required to hold its Texture coordinates. Another would be required to
hold the vertices of the 3D model that would display its image on the screen. And yet
another would be required to hold the properties of the bounding shape that would
be used to detect its collision with other Objects. One Record would be required to
hold its unique properties, including its mass, position, speed and acceleration. One
Record would be required to hold the projection of the Game Object, through the
3D camera, onto the screen. And six Records would be required to hold the proper-
ties of the Secondary Events it would receive. These would be sent when the sec-
ond Game Controller was either connected, disconnected or when its devices were
moved, stopped or pressed.

The uncontrolled 3D Game Object would require 13 Records, just like the uncon-
trolled 2D Game Object. One Record would be required to hold its Texture. Another
would be required to hold its Texture coordinates. Another would be required to
hold the vertices of the 3D model that would display its image. Another would be
required to hold the properties of the bounding shape that would be used to detect its
collision with other Objects. And yet another would be required to hold the vertices
and Normal Vectors of the bounding shape. One Record would be required to hold
the projection of the Game Object, through the 3D camera, onto the screen. And
three Records would be required to hold the properties of the Secondary Events it
would receive. These would be sent when either another Object came within close
proximity of it, collided with it, or after the sound played during the collision had
ended. It would play the same three sounds heard when these Events occurred for
the uncontrolled 2D Game Object. So it would use the same three Records, which
hold these sounds.

113 The Software Production Process

The hollow 3D Game Object would require fve Records, just like the hollow 2D
Game Object. One Record would be required to hold the properties of the bounding
shape that would be used to detect its collision with other Objects. Another would be
required to hold the vertices and Normal Vectors of the bounding shape. One Record
would be required to hold the unique properties of the Game Object, including its
mass, position and speed. And one Record would be required to hold the solitary
Secondary Event it would receive. This would be sent when another Object col-
lided with it. It would play the same sound heard when this Event occurred for the
hollow 2D Game Object. So it would use the same Record, which holds that sound.

The 2D Camera Object would only require one Record. This Record would hold
its properties, including its position and the size of its viewing area.

Finally, the 3D Camera Object would also require one Record. This Record
would similarly hold its properties, including its position, orientation and the size of
its viewing area.

The Record for the 3D camera would be the last of the Records that would be in
the Game Database. If you were to add up all the Records required for each software
module, you would end up with a total of 115 Records, for this test. But, six of these
Records would be duplicates. These would namely be those Records used to hold the
different sounds the 3D Game Objects would play. These would be the same sounds
played by the 2D Game Objects. So the fnal total would be 109 Records.

The Game Database would be 17th and last software component that would be
built for the test. There would be fewer hardware components required by compari-
son. There would only be four in all. The frst of these would be a computer monitor
that would display the game. The second would be a computer, which would be oper-
ated by the software, and be connected to the monitor. The computer would have a
storage media that would be large enough to hold the game software, and the Game
Database. The last of the hardware components would be two Game Controllers
that would be connected to the computer.

Each Game Controller would be equipped with analogue devices and digital
devices. The analogue devices would include either one device, with two axes. Or it
would include two separate devices, which could be combined, and used as a substi-
tute for a device with two axes. In the latter case, each of the analogue devices could
either be a button, or some other device with one axis. The digital devices on the
Game Controller would include at least fve buttons.

Once the software components had been built and assembled, the results would
be tested on the computer hardware. The test would follow these 49 steps:

1. You would disconnect all Game Controllers from the computer.
[This would be in preparation for testing the ability, of the Game

Controllers Host, to detect the connection and disconnection of devices
from the computer.]

2. You would start the game.
[You should see one 2D Game Object in the foreground, and one 3D

Game Object in the background. The 2D Game Object should appear
within a rectangle with a white outline. But it may not be possible to see
this outline when the game starts, unless the Object was placed next to one

114 Event-Database Architecture for Computer Games

of the four sides, by default. The 3D Game Object should appear within
a cube, and on top of a square foor. The foor should be made up of an
alternating sequence of black and grey parallel lines. The cube should have
white outlines. But again, it may not be possible to see these outlines, unless
the Object was placed next to the sides of the cube, by default.]

3. You would connect the frst Game Controller.
[A second 2D Game Object should appear.]

4. You would connect the second Game Controller.
[A second 3D Game Object should appear.]

5. You would disconnect the frst Game Controller.
[The second 2D Game Object should disappear.]

6. You would disconnect the second Game Controller.
[The second 3D Game Object should disappear.]

7. You would reconnect both Game Controllers.
[Both the second 2D Game Object and the second 3D Game Object

should reappear.]
8. You would move the analogue device, on the frst Game Controller, between

both extremes of its vertical axis.
(If you were using two analogue devices instead of one, you would move

the frst one between both extremes of its axis.)
[This should move the second 2D Game Object up and down, on the

screen.]
9. You would move the analogue device, on the frst Game Controller, between

both extremes of its horizontal axis.
(If you were using two analogue devices instead of one, you would move

the second one between both extremes of its axis.)
[This should move the second 2D Game Object left and right, on the screen.]

10. You would press the frst button, on the frst Game Controller.
[This should switch the effect of the movement, of the analogue devices,

to the speed of the 2D Game Object.]
11. You would move the analogue device, on the frst Game Controller, up

towards the top of its vertical axis. Then you would quickly release the
device back to its default position.

[The 2D Game Object should start and continue moving up the screen.]
12. You would let the 2D Game Object continue moving up the screen.

[The Game Object should stop when it hits the top edge of the hollow
rectangle, which forms a boundary around it. You should hear a unique
sound when the Game Object collides with this boundary.]

13. You would move the analogue device, on the frst Game Controller, down
towards the bottom of its vertical axis. Then you would quickly release the
device back to its default position.

[The 2D Game Object should start and continue moving down the
screen.]

14. You would let the 2D Game Object continue moving down the screen.
[The Game Object should stop when it hits the bottom edge of the hol-

low rectangle, which forms a boundary around it. You should hear the same

115 The Software Production Process

sound, when the Game Object collides with the boundary, that you heard
when it hit the top edge.]

15. You would tap the analogue device upwards, so that the 2D Game Object
began to move back up the screen. When the Game Object had reached
the top-half of the boundary, you would tap the device downwards so that
it stopped.

[The controlled Game Object should be visible halfway up the
boundary.]

16. By gently tapping the analogue device, on the frst Game Controller,
up, down, left or right, you would force the controlled 2D Game Object
towards the stationary 2D Game Object, on the screen.

[When the controlled Game Object came within close proximity, of the
stationary Object, a unique sound should be heard.]

17. By gently tapping the analogue device, on the frst Game Controller, up,
down, left or right, you would force the controlled 2D Game Object into
the stationary Object, on the screen.

[When the two Objects collided, you should hear a unique sound caused
by the collision. When this sound had ended, you should hear a different,
second sound immediately following it. The momentum should be con-
served during these collisions. So, if the two Objects were to collide head
on, the stationary Object should move off at half the speed of the con-
trolled Game Object, since it would have twice the mass. And the con-
trolled Game Object should stop. Both Objects should eventually come to
rest because of friction.]

18. You would repeat step (17) several times, watching the colour of the con-
trolled 2D Game Object.

[The colour of the controlled 2D Game Object should have changed
from green to either red or blue after step (17). It should then alternate ran-
domly between red and blue after each subsequent collision.]

19. By gently tapping the analogue device, on the frst Game Controller, you
would slowly force the uncontrolled 2D Game Object towards one of the
sides of its enclosure. You would propel it with the controlled Game Object.

[The sides of the surrounding hollow rectangle should be clearly marked
by white lines. The uncontrolled Game Object should be stationary, just
touching one of the sides.]

20. By gently tapping the analogue device, on the frst Game Controller, you
would force the controlled Game Object into the stationary Object, caus-
ing it in turn to collide into the boundary.

[The collision between the Game Objects should be briefy audible. But
then it should be replaced by the sound of the stationary Object colliding
with the boundary.]

21. By gently tapping the analogue device, on the frst Game Controller,
you would force the controlled Game Object into the four sides of the
uncontrolled one. The force of the frst two impacts would be applied
vertically: directly down onto the top, and up onto the bottom of the
uncontrolled Object. The force of the second two impacts would be

116 Event-Database Architecture for Computer Games

applied horizontally: onto the right and the left of the uncontrolled
Object.

[When it had collided with the top and the bottom of the uncontrolled
Object, the Game Object should lose all of its momentum to the uncon-
trolled one. It should come to a complete halt. However, when it had col-
lided with the other two sides of the uncontrolled Object, it should only
lose part of its momentum. The controlled Game Object should continue
moving after each collision, having been partially defected on each side.]

22. By gently tapping the analogue device, on the frst Game Controller, you
would move the controlled Game Object back to the mid-level of the
boundary.

[The controlled Game Object should be visible halfway up the bound-
ary, horizontally adjacent to the uncontrolled and stationary Game Object.]

23. You would press the second button, on the frst Game Controller.
[This should switch back the effect of the movement, of the analogue

device, to the position of the 2D Game Object.]
24. You would move the analogue device, on the frst Game Controller, between

both extremes of its vertical axis.
[This should move the controlled 2D Game Object up and down the

boundary.]
25. You would press the third button, on the frst Game Controller.

[This should increase the effect of the movement, of the analogue device,
on the position of the 2D Game Object.]

26. You would move the analogue device, on the frst Game Controller, between
both extremes of its vertical axis.

[This should move the controlled 2D Game Object up and down the
boundary, but over greater distances than before.]

27. You would press the fourth button, on the frst Game Controller.
[This should decrease the effect of the movement, of the analogue

device, on the position of the 2D Game Object.]
28. You would move the analogue device, on the frst Game Controller, between

both extremes of its vertical axis.
[This should move the controlled 2D Game Object up and down the

boundary, but over lesser distances than before.]
29. You would move the analogue device, on the second Game Controller,

between both extremes of its vertical axis.
(If you were using two analogue devices instead of one, you would move

the frst one between both extremes of its axis.)
[This should move the 3D Game Object, which appeared when the

Game Controller was connected, backwards and forwards. The movement
should be parallel to the black and grey lines, along the foor underneath
the Object.]

30. You would move the analogue device, on the second Game Controller,
between both extremes of its horizontal axes.

(If you were using two analogue devices instead of one, you would move
the second one between both extremes of its axis.)

117 The Software Production Process

[This should move the 3D Game Object left and right. The movement
should be across the black and grey lines underneath the Game Object.]

31. You would press the frst button, on the second Game Controller.
[This should switch the effect of the movement, of the analogue devices,

to the speed of the 3D Game Object.]
32. You would move the analogue device, on the second Game Controller, up

towards the top of its vertical axis. Then you would quickly release the
device back to its default position.

[The 3D Game Object should start and continue moving backwards,
along the foor.]

33. You would let the 3D Game Object continue moving backwards, along the
foor.

[The Game Object should stop when it hits the back of the hollow cube,
which forms a boundary around it. You should hear the same sound you heard
when one of the 2D Game Objects hit the hollow rectangle around it.]

34. You would move the analogue device, on the second Game Controller,
down towards the bottom of its vertical axis. Then you would quickly
release the device back to its default position.

[The 3D Game Object should start and continue moving forwards,
along the foor.]

35. You would let the 3D Game Object continue moving forwards.
[The Game Object should stop when it hits the front of the hollow cube,

which forms a boundary around it. You should hear the same sound, when
the Object had collided with the boundary, that you heard when it hit the
back of the cube.]

36. You would tap the analogue device upwards, so that the 3D Game Object
began to move backwards. When the Game Object had reached the back
half of the foor, you would tap the device downwards so that it stopped.

[The Game Object should be visible halfway down the foor.]
37. By gently tapping the analogue device, on the second Game Controller,

up, down, left or right, you would force the controlled 3D Game Object
towards the stationary 3D Game Object on the screen.

[When the controlled Game Object had moved within close proximity,
of the stationary Object, the same sound should be heard as when the 2D
Game Objects came within close proximity.]

38. By gently tapping the analogue device, on the second Game Controller, up,
down, left or right, you would force the controlled 3D Game Object into
the stationary one, on the screen.

[When the two Game Objects collided, you should hear the same
sound heard when the 2D Game Objects collided together. When this
sound ends, you should hear the same second sound immediately fol-
lowing it, which was heard when the 2D Game Objects collided. The
momentum should be conserved during these collisions. So, as with the
2D Game Objects, if the two 3D Game Objects were to collide head
on, the stationary Object should move off at half the speed, of the con-
trolled Object, since it has twice the mass. And the controlled Game

118 Event-Database Architecture for Computer Games

Object should stop. Both Objects should eventually come to rest because
of friction.]

39. By gently tapping the analogue device, on the second Game Controller,
you would slowly force the uncontrolled 3D Game Object towards one of
the sides of its enclosure. You would propel it with the controlled Game
Object.

[The sides of the surrounding hollow cube should be clearly marked by
white lines. And the uncontrolled Game Object should be stationary, just
touching one side of the underlying foor.]

40. By gently tapping the analogue device, on the second Game Controller, you
would force the controlled 3D Game Object into the stationary one, caus-
ing it in turn to collide into the sides of the cube.

[Just as with the 2D Game Objects, the collision between the Game
Objects should be briefy audible. But it should be quickly replaced by the
sound of the stationary Object colliding into the boundary.]

41. By gently tapping the analogue device, on the second Game Controller,
you would force the controlled Game Object into the four vertical sides
of the uncontrolled one. The force of the frst two impacts would be
applied directly forwards into the back, and backwards into the front,
of the uncontrolled Object. The force of the second two impacts would
be applied directly into the left, and into the right, of the uncontrolled
Object.

[When it collided with the back and front of the uncontrolled Object,
the Game Object should lose all of its momentum to the uncontrolled one.
It should come to a complete halt. However, when it collided with the other
two sides of the uncontrolled Object, it should produce one of three pos-
sible results. The controlled Game Object should either jump up in the
air or fall back onto the foor. Or it should slowly climb up the invisible
ramps, which would be inclined against these two sides, and roll back onto
the foor. Or, if it had enough momentum, it should climb up and over the
uncontrolled Object.]

42. By gently tapping the analogue device, on the second Game Controller, you
would move the controlled 3D Game Object to the midway point, between
the front and back of the foor.

[The Game Object should be visible halfway down the foor, adjacent to
the uncontrolled and stationary Game Object.]

43. You would press the second button, on the second Game Controller.
[This should switch back the effect of the movement, of the analogue

device, to the position of the 3D Game Object.]
44. You would move the analogue device, on the second Game Controller,

between both extremes of its vertical axis.
[This should move the controlled 3D Game Object backwards and for-

wards, along the foor.]
45. You would press the third button, on the second Game Controller.

[This should increase the effect of the movement, of the analogue device,
on the position of the 3D Game Object.]

119 The Software Production Process

46. You would move the analogue device, on the second Game Controller,
between both extremes of its vertical axis.

[This should move the controlled 3D Game Object backwards and for-
wards, along the foor, but over greater distances than before.]

47. You would press the fourth button, on the second Game Controller.
[This should decrease the effect of the movement, of the analogue

device, on the position of the 3D Game Object.]
48. You would move the analogue device, on the second Game Controller,

between both extremes of its vertical axis.
[This should move the controlled 3D Game Object backwards and for-

wards, along the foor, but over lesser distances than before.]
49. You would press the ffth button, on either the frst or the second Game

Controller.
[This should display a message briefy, stating that the game was about

to shut down, before shutting it down. This should also produce a new
computer fle, next to the Game Database used for the test. The new fle
should be another Database, containing one Record. This Record should
be a copy of the Log Record produced, in the computer, during the test.
This log should contain all the changes that affected the uncontrolled 3D
Game Object.]

4.1.2 DESIGNING THE SOFTWARE

The task of each Host Module has already been outlined in the descriptions of The
Software Architecture.3 From these descriptions, you would be able to break down
each Host Module into a set of software procedures.

Once you had decided what procedures you would use, each of these would be
described in a document. The document would give a name to each one and describe
it. The document would also include the description of the Host Module which these
belonged to. You can copy or refer to the descriptions of the Host Modules in chapter
3 of this book.

Whatever set of software procedures you chose, each Host Module would need
three standard procedures. The frst procedure would be needed to set up the mod-
ule, when the game had begun. A second procedure would be needed to periodically
update the task of the module during each Unit of game time. And a third procedure
would be needed to shut down the Host Module, when the game had ended.

As has already been mentioned, when it was set up, the Central Host would set
up all the other Host Modules, beginning with the Database Host. This should
read, into the computer memory, all the Records required by the Central Host. So
that it could verify each of these Records contained sensible values in its Fields. If
any of these were not sensible, then the Central Host would have failed to set up. So
it would shut down the game in accordance with its description. Otherwise, it would
continue setting up the other Host Modules, checking for any errors it detected after
each setup.

When it was set up, the Database Host would allocate all the space, in the
computer memory it would need, from the hardware. Remember that the Game

120 Event-Database Architecture for Computer Games

Database would hold all the shared Game data. It would also hold all Abstract
data the Host Modules and Game Objects would use. The Database Host would
then load the Database into the computer memory. Every Record in the Database
would have sensible values when the Database was created. So there would be
no need to set up either the Abstract data or the Game data, after these had been
loaded.

When the Objects Host was set up, it would fnd out how many Game Objects
were going to be used in the initial set, and the size of each one. This information
would be found in the Objects List Record in the Game Database. It would then
allocate all the space in the computer memory it would need to store these Objects.
And each Object would, in turn, be created and set up in that space, in accordance
with the description of that Host Module.

All the other Host Modules would simply verify that all the Records, to be used
by each one had sensible values, when these were set up. Otherwise, it would fail in
accordance with the description of the Central Host.

In keeping with this description, the Central Host would try to update all other
Host Modules, in turn, when it updated its task. Each of the other Host Modules
would, likewise, perform whatever task had been outlined in its description, when it
was updated by the Central Host. The exceptions would be the Database Host and
the Objects Host. These would not require a procedure to update the two tasks these
would carry out. Since each would perform its task when Records were accessed in
the Game Database, or Secondary Events were received from the Events Host,
respectively.

While performing its task, each Host Module would check for any errors, just
as when it was set up. And it would report back any errors to the Central Host, in
accordance with its description. This would include when the Events Host received
a Shutdown Event. It would stop and report this as an error. And this would in turn
cause the whole game to be shut down.

Most Host Modules would do nothing when each was shut down, apart from the
Database Host, the Objects Host and the Central Host. The Database Host would
release all the space in the computer memory it was using. The Objects Host would
do likewise. The Central Host would shut down all the Host Modules, software
libraries, the computer hardware and close the game.

The 11 Game Objects (three 2D Game Objects, three 3D Game Objects, 2D
Camera Object, 3D Camera Object, Master Sound Speaker Object, Master
Player Object, Master Physics Object) which would be used to test the Event-
Database Architecture have already been described in the previous chapter. All of
these Objects would use two standard software procedures.

The frst procedure would be used to set up the Object with its properties, taken
from a Record in the Game Database. For this test, however, none of the Objects
need to do anything when set up. Therefore, the procedure would do nothing. The
second standard procedure would be used to respond to the Events which would test
the Architecture.

For example, the controlled 2D Game Object would use this second procedure to
respond to Secondary Events from the Game Controllers Host. When it received a

121 The Software Production Process

Connect Event, the Object would add itself onto the list of 2D Objects that would
be displayed. And when it received a Disconnect Event, it would remove itself from
the list.

The response of a Game Object to Secondary Events would depend on its
role in the game design. It may have only one response. In which case it needs one
secondary procedure to perform its Action in addition to the standard procedure.
It may have two responses, in which case it needs two secondary procedures to
perform its two Actions in addition to the standard procedure. And so on and so
on. It may have no response at all. Nevertheless, just like the Host Modules, you
would include a description of each secondary procedure in a software design
or technical design document. The document would give a name to each one
and describe it. The document would also include a description of the role of the
Game Object in the game design.

4.1.3 DESIGNING THE DATABASE

The design of the test Database would have two components: the Game data and the
Abstract data. The shared Game data would come from the data described in the
overall design of the test. These include the artwork and the sounds that would be
used. The Abstract data would come from the software design of the Host Modules
and the Game Objects. These designs, as mentioned in the previous chapter, would
include what data each Host Module, or Game Object, would receive, modify
or send to other Host Modules. So, from these descriptions, you would be able to
decide what Records would be required in the Game Database.

Once you had made your decision, you would need to choose what set of Database
Tables were going to be in the Game Database, Database Records in each Table
and Database Fields in each Record. Each Field could either be a number (foat-
ing point number or whole number), a group of words or a Primary Key of another
Record. A Field could also be a list of either numbers, groups of words or Primary
Keys. You would need to select the size of each Field. This means the minimum and
maximum value of each number, the maximum length of each group of words, the
maximum length of each list.

After you have designed the Game Database, you should draw an Entity-
Relationship diagram4 from it. So that you can visualise it and see the relationship
of all the entities or items in the Database. This includes the relationship between
all the Database Tables, Database Records or Database Fields. You should be able
to see where you have any redundant data which you can eliminate and make the
Database more simple.

Now in order to create an Entity-Relationship diagram, it is important to avoid
creating a hierarchy of Database Tables, Records or Fields. And avoid creating cir-
cular references or relationships between the entities. In the description of some of
the Host Modules, there were relationships between entities in the Game Database
that looked like hierarchical relationships.

For example, the Sounds Host has a Database Record, a Sound Microphone
Object Record, which refers to another Record, a Game Object Record, that

122 Event-Database Architecture for Computer Games

belongs to the Objects Host. And the latter defnes a location of a Game Object
where a microphone in the former has been placed in the Game World. To listen to
sounds around that locality. This looks like a hierarchical relationship between the
Sound Microphone Object Record and a Game Object Record. With the former
one level above the latter in the hierarchy.

But this apparent hierarchical relationship is incidental. The paradigm in
creating a Relational Database is Basic Set Theory5: not a hierarchy. In this
paradigm, everything is a set which has some relationship with another set. A
Database Table is a set of Database Records. A Database Record is a set of
Database Fields. A Database Field is a set of words or numbers. To establish
a relationship between one set and another all you need to do is to give them a
common member.

In the case of the Sound Microphone Object Record and the Game Object
Record, this common member is the Object ID Field of a Game Object
Record. The Object ID Field is a Primary Key of the Game Object Record.
But instead of being a Primary Key, it could just as well be a Field containing
a number like

‘9999’

or a word like

‘MicrophoneObject’.

So long as this common member is unique and can be used to identify a relation-
ship between a Sound Microphone Object Record and a Game Object Record,
then it fts the paradigm. So long as you can use it to fnd the intersection of one set, a
Sound Microphone Object Record, and another set, a Game Object Record, then
it fulfls its purpose.

From this you can see that the Object ID Field of a Game Object Record is not
the ideal common member. It is a Primary Key for a Record and therefore unique.
But you could have several Database Records which have that in a secondary Field,
not just a Sound Microphone Object Record. And if you were to search for all
Records with the Object ID Field with a particular Primary Key, you could get a
Sound Microphone Object Record or a Game Controllers Host Record which
also has an Object ID Field.

A better common member to have between a Sound Microphone Object Record
and a Game Object Record would be a SOUND OBJECT FIELD. This would be
a combination of the Primary Key of a Sound Microphone Object Record and the
Primary Key of a Game Object Record e.g.

SoundMic1GameObj1.

And a better common member to have between a Game Controllers Host Record
and a Game Object Record would be a GAME CONTROLLER OBJECT

123 The Software Production Process

FIELD. This would be a compound of the Primary Keys of a Game Controllers
Host Record and a Game Object Record e.g.

GameCtrl1GameObj1.

By doing this you avoid the pitfalls of creating a hierarchical relationship between
the entities i.e. Sound Microphone Object Record, Game Controllers Host
Record and Game Object Record. These hierarchical relationships naturally arise
in the hierarchical databases used in the Computer Games industry and cause several
problems.

Normally in the Computer Games industry, in the Software Evolution Process
that is used to make a game or game-editor, the data for the game ends up in the
form of a hierarchical database. This is a natural consequence of the program-
ming languages used to make the game or the game-editor, or the commercial
game-engine that the game or game-editor is made from. The paradigm of these
programming languages is to treat the Data Structures like branches growing
upwards from the trunk of a tree, or branches of a root extending downwards
into the ground. In this paradigm, Data Structures are contained within Game
Objects. Each Game Object can either refer to other Game Objects in a hier-
archy or inherit properties from other Game Objects in a hierarchy. And that in
turn produces a hierarchy of Data Structures. And that in turn produces a hierar-
chical database.

But due to the way that the game or game-editor evolves through the Software
Evolution Process, from the beginning to the end of production, without any
plan, the hierarchy that results is very deep, very complex and unscrutable. You
can get Game Objects which inherit from multiple parent Game Objects. You
can get Game Objects which refer to or are inherited by multiple child Objects
lower down the hierarchy. You can get Game Objects lower down the hierarchy
referring to or inheriting from Objects higher up the hierarchy. That results in
a circular dependency which makes it impossible to unravel or visualise. And
no one understands the hierarchical databases of these commercial games or
game-engines as a whole. Here is an example of these hierarchical databases in
Figure 4.1.

The hierarchical Data Structure of the commercial game-engines does not only
affect the ability to visualise the data in single player games. It also affects the abil-
ity to visualise the data being transmitted across a computer network in multiplayer
games. The data transmitted across the network is used to synchronise the Game
World on the computers on the network taking part in the game. And this is done
by replicating the properties of the Game Objects in the Game Worlds on these
computers. And by replicating the execution of software procedures of the Game
Objects.

Replicating the properties of the Game Objects across the network involves rep-
licating the Data Structures of the Game Objects. And that Data Structure is part
of the hierarchical Data Structure or hierarchical database of the game. So the data
transmitted to synchronise these properties is also hierarchical. There is an example

124 Event-Database Architecture for Computer Games

FIGURE 4.1 Visualisation of the hierarchy of Objects or C++ Classes or Data Structures
based on inheritance, from a game built with the Unreal Engine by Slippery Games Inc. 2019.
Redacted. Anonymous.

of the hierarchical database used to replicate properties on the computer network in
Figures 4.2–4.4.

Replicating the execution of the software procedures involves replicating the
execution of procedures which are part of the Data Structures of the Game Objects.
And the parameters that these software procedures take come from the hierarchical

FIGURE 4.2 Visualisation by Unreal Networking Insights Tool of Levels 1, 2, 3, 4 and 5 in
the hierarchical Data Structure of a message or packet being transmitted across a computer
network to replicate properties of a Game Object.

125 The Software Production Process

FIGURE 4.3 First half of a visualisation by Unreal Networking Insights Tool of Levels 1, 2,
3 and 4 in the hierarchical Data Structure of a message or packet being transmitted across a
computer network to replicate properties of a Game Object (or ‘Actor’ in the language of the
Unreal Engine) called ‘PlayerPawn_C’.

Data Structure of the game. So the data transmitted to replicate the execution of
these software procedures is also hierarchical and very diffcult to visualise. These
is an example of the hierarchical database used to replicate the execution of software
procedures in Figures 4.5–4.7.

Note the complexity of the hierarchical Data Structures of the messages in the
preceding diagrams. This complexity is not only refected in the number of levels in

FIGURE 4.4 Second half of the visualisation by Unreal Networking Insights Tool of Level
1 and 2 in the hierarchical Data Structure of a message or packet being transmitted across a
computer network to replicate properties of a Game Object (or ‘Actor’ in the language of the
Unreal Engine) called ‘PlayerPawn_C’.

126 Event-Database Architecture for Computer Games

FIGURE 4.5 Visualisation of Level 1 in the hierarchical Data Structure of a message or
packet being transmitted across a computer network to replicate the execution of a software
procedure ‘ServerMoveNoBase’.

FIGURE 4.6 Visualisation of Levels 1, 2 and 3 in the hierarchical Data Structure of a mes-
sage or packet being transmitted across a computer network to replicate the execution of a
software procedure ‘ServerMoveNoBase’.

FIGURE 4.7 Visualisation of Levels 3 and 4 in the hierarchical Data Structure of a message
or packet being transmitted across a computer network to replicate the execution of a software
procedure ‘ServerMoveNoBase’, from a game built with the Unreal Engine.

the hierarchy, and the number of sub-divisions in each level. But it is also refected in
the cryptic names given to each sub-division e.g.

PacketHeaderAndInfo
Actor
NetGUIDs
NetID
GameplayTag
ContentBlockHeader
BunchHeader
NetGUIDExporterBunchHeader

127 The Software Production Process

These names come from the degenerative language of the Software Evolution
Process used to develop the commercial game-engines that these Data Structures
come from.

Some would say the complexity of the hierarchical Data Structure being used to
transmit messages across a computer network, by commercial game-engines, sim-
ply refects the complexity of the computer hardware and Network Cards. And it
also refects the low-level techniques used to transmit messages effciently using this
technology (e.g. Binary Bits and Bytes), which only ‘experts’ can understand. The
implication is that this complexity just refects the state of the art.

But in the end, all these messages do is affect the high-level constructs of the Game
World i.e. add, move or delete Game Objects, display Objects, respond to Events
and perform Actions. So why should the names and Data Structures of these mes-
sages refect the low-level technology instead of refecting the high-level constructs of
the game design? The technology was created to serve the Users; the Users were not
created to serve the technology. The technology does not really care whether the Data
Structure being transmitted is hierarchical or not. As has already been explained, the
hierarchical Data Structure or hierarchical database for the games built with commer-
cial game-engines is incidental. Due to the paradigm of the programming languages
used to build game-engines, the Data Structures are contained within the Game
Objects. And the Game Objects either refer to each other or inherit from each other
in a hierarchy. And that in turn creates a hierarchical Data Structure, based on refer-
ence or inheritance. And that in turn produces a hierarchical database. And that in
turn produces the hierarchical Data Structure of the messages sent across the network.

If the game were based on a Relational Database, then the Data Structure of
the messages would refect that Relational Database. Each message would either
be referring to an entity in the Database (e.g. a Game Object, a Primary Event,
a Secondary Event, a sound stream, a 2D image, a 3D Model etc.) Or it would be
reading the properties of that entity. Or it would be writing to the properties of that
entity. So the names of the divisions of the Data Structure would refect the names
of the entities, Database Tables, Records or Fields. These names would not be cryp-
tic and refect the low-level techniques or tools used to build the game. Since that
is precisely the job of the Database Administrator who maintains the Database
in the Event-Database Architecture. To keep the language of the software archi-
tecture refecting the high, abstract, accessible constructs of the Game World, the
game design and players.

Furthermore, the Data Structure of each message would be a partially ordered set
of Database Fields which holds the properties of these entities i.e. a pair of values.
The frst value is the ordinal number of a Database Field, and the second value is the
value to be read or written to that Field. And the frst pair of values in each message
would be the ordinal number of Primary Keys, and the Primary Key of a Database
Record. There is an example of the Data Structure of each message in Figure 4.8.

For example, consider a Database Table of Secondary Events, which you can
see in Table 4.1.

If the Events Host wanted to send a message across the computer network to
the Objects Host to respond to one of the Secondary Events in the Table, the Data
Structure of the message would just be the ordinal number for Primary Keys followed

128 Event-Database Architecture for Computer Games

FIGURE 4.8 Visualisation of the pairs of values, the ordinal number of a Database Field
and the value of that Field, that makes up the relational Data Structure of a message or packet
being transmitted across a computer network. By a game built with the Event-Database
Architecture.

by Primary Key for the Database Record for that Event. There is an example of this
in Figure 4.9.

Another example, consider a Database Table of Game Objects in Table 3.4
described earlier. Now in the Event-Database Architecture, the paradigm for mak-
ing multiplayer games is not to constantly replicate the properties of Game Objects
or the execution of software procedures or functions on computers or Game Clients,
across a computer network. Unless you are using the Peer-To-Peer Network

TABLE 4.1
Example of a Database Table of Secondary Events.

Delay Game Time
Secondary Event ID (Sec.) (Sec.) Game Object Causing Objects
Master Object Initial Reset 0 1 Master Object None
Event

Master Object Periodic 0 200 Master Object None
Reset Event

Master Object Heartbeat 0 258 Master Object None
Event

Thief Dead Event 0 260 Thief Object Warrior 2D Player Object

Thief Resurrect Event 5 265 Thief Object Thief 2D Player Object

Secondary Event ID Priority Events ID Hex. Code
Master Object Initial Reset Event None 0011

Master Object Periodic Reset Event None 0018

Master Object Heartbeat Event None 0021

Thief Dead Event Thief’s Death Priority Events 0022

Thief Resurrect Event None. 0023

The most important part is the frst Field the Primary Keys. For a full explanation of all the other Fields,
see the subchapters entitled 3.1 Events Host and the subchapter entitled A4.2: Secondary Events Table
in the subchapter A4 Step 4: LPmud Data Design.

129 The Software Production Process

FIGURE 4.9 Visualisation of the relational Data Structure of two messages or packets
being transmitted across a computer network, from the Events Host to the Objects Host, for
the two Primary Events ‘Thief Dead Event’ and ‘Thief Resurrect Event’.

Architecture. In that case, when a new Peer joins a game, the Central Host on the
special Peer hosting the game sends messages to the new Peer that connects to the
network. To replicate selected Database Records or Database Fields, once, in its
local Game Database in order to synchronise the Game World on the host and the
new Peer. And it then relies on the new Peer replicating the Events and Actions that
occur on the host, in order to maintain synchronisation.

In that case, to replicate the properties of a Game Object, for example, used to move
it across the Game World, then the Data Structure of the message from the Central Host,
to the new Peer, would just be the ordinal number for Primary Keys. Followed by the
Primary Key of the Game Object. Followed by the ordinal number for the position of the
Game Object. Followed by the values for its position. Followed by the ordinal number
for the Database Fields of its speed. Followed by the values of its speed. Followed by the
ordinal number for the Database Fields of its acceleration. Followed by the values of its
acceleration. There is an example of this Data Structure in Figure 4.10.

When a multiplayer game was started, each Host Module would connect to the
Database Host, and the Database Host would send back the ordinal number, size
and full name of each Field in the Game Database. This stream of information
would begin and end with the ordinal number of the Primary Keys which is always 1.

FIGURE 4.10 Visualisation of the relational Data Structure of a message or packet being
transmitted across a computer network, from the Central Host to the Database Host.

130 Event-Database Architecture for Computer Games

And therefore, each Host Module would know the ordinal number and size of any
Field in any messages it read from other Host Modules. And it would know the
ordinal number and size of any Field in any messages it wrote out to other Host
Modules. And each Host Module could visualise the messages it was receiving or
sending, in its logs or on the screen, by displaying the full name of the Fields next
to the values of each Field it was reading or writing across the computer network.
Unlike the complex and cryptic hierarchical Data Structures of the messages sent
across a computer network, for a game built with a commercial game-engine, which
is based on a hierarchical database.

In a Relational Database, like the Game Database of the Event-Database
Architecture, the Database can also be visualised in an Entity-Relationship dia-
gram. And this makes it clear for everyone to understand and use. These leads to seven
advantages that the Event-Database Architecture and its Relational Database have
over commercial game-editors or game-engines and their hierarchical databases:

1. The hierarchies in the database of commercial game-engines can become
so complex that these cannot be visualised in a diagram like the Game
Database of the Event-Database Architecture can in an Entity-
Relationship diagram.

2. The hierarchies in the commercial game-engines can become circular,
where a Data Structure lower down the hierarchy refers to one further up
the hierarchy, causing circular references in the hierarchy, whereas the
Game Database of the Event-Database Architecture does not have cir-
cular references if developed within the paradigm of Set Theory.

3. Modifying one Data Structure in the hierarchy of the commercial game-
engines may require modifying some other Data Structure further down
the hierarchy related to it, but the hierarchies are so complex no one can
predict this, and so you suddenly get corruption in the hierarchical database
when it is rebuilt, because two interrelated Data Structures were not rebuilt,
whereas the Game Database of the Event-Database Architecture is a
Relational Database where the Data Structures are connected by members
they share in common, not by a hierarchy.

4. The sudden corruption of the hierarchical database of commercial game-
engines makes the process of building the game non-deterministic; there-
fore, you often have to rebuild the entire database from scratch to stop this
and make the process deterministic, which waste a lot of time and resources.

5. The hierarchical Data Structures of commercial game-engines lead to com-
plex and cryptic hierarchical Data Structures of the messages sent across a
computer network when playing multiplayer games.

6. The hierarchical databases of commercial game-engines cannot be queried
and edited using a standard tool, so there are no books available which
describe how to query and edit the entire database.

7. A Relational Database can be queried and edited using standard program-
ming language called Structured Query Language or SQL, and there are
millions of books available which describe how to query and edit the entire
database.

131 The Software Production Process

An example of point (2) can be seen in some commercial game-engines that store
the properties of Game Objects in fles. The properties of each Game Object are
stored in one fle. So when the game is SAVED or written to a fle to continue playing
later on, all of the properties of the Game Objects in the Game World are saved to
fles. And when the game is LOADED or read back from a fle, to continue playing,
all of the properties of the Game Objects in the Game World are loaded back from
other fles.

However, when you have a hierarchical relationship between the Game Objects,
where one Game Object higher up the hierarchy refers to or is inherited by another
Game Object lower down the hierarchy, that means you have a hierarchical rela-
tionship between the fles for the Game Objects. And this leads to common Bugs in
these commercial game-engines when you have a circular relationship in this hierar-
chy, which results in the process of loading the game never ending.

For example, suppose you try to load a game, which has three Game Objects in
the Game World that have a circular relationship in a hierarchy. You begin by try-
ing to load the properties of the frst Game Object that includes a reference to the
second Game Object at the next level down in the hierarchy. So you have to load
the properties of that second Game Object from a second fle. And when you load
the properties of the second Game Object from the second fle, you fnd a reference
to the third Game Object at the next level down the hierarchy. So you have to load
the properties of the third Game Object from a third fle. But when you load the
properties of the third Game Object from the third fle, you fnd a reference to the
frst Game Object from the frst fle, two levels further up the hierarchy. So you have
to load the properties of the frst Game Object again from the frst fle, and so on
and so on.

Before you know it, the process of loading the Game Objects gets stuck in
a circular loop that never ends. In this example, it is obvious only because the
hierarchy of Game Objects is only three levels deep. And it may seem easy to
prevent. But imagine where the hierarchy is 20 or 30 levels deep. At that point
it is not obvious and it is almost impossible to prevent. You will fnd yourself
working on a game with a commercial game-engine for a long time, seemingly
without any problems, and then suddenly the game stops working. And it seems
to be stuck in the process of loading a previously saved game. Leaving you
completely baffed.

Now some commercial game-engines do report warnings or errors when they
detect this happening. But these reports are just remedial and fawed.

Firstly, these reports are inconsistent and do not always appear when playing a
game. Due to the fact that the symptoms of this circular never-ending process of
loading sometimes cause larger overriding problems like running out of computer
memory.

Secondly, these reports are vague. The reports may tell you that you have a circu-
lar dependency in your Game Objects. But these will not tell you what all the Game
Objects are that make up this circular dependency in the hierarchy.

Thirdly, these reports are incidental. These reports will only tell you of the circu-
lar dependencies you happen to come across while playing the game. It will not tell
you of all the other circular dependencies that may exist in the hierarchical database.

132 Event-Database Architecture for Computer Games

Fourthly, these reports are ad hoc. These reports appear after the game has been
built and the hierarchical database is being used to play the game. These reports do
appear before the game is built. And as a result these reports waste a lot of time and
resources. You get none of these four problems with a Relational Database.

4.1.4 BACKGROUND RESEARCH

Before you implemented the Event-Database Architecture, it would be worth-
while doing background research on what techniques could be used to build some
of the Host Modules. These would namely be the Database Host, Physics Host,
Graphics Host and Sounds Host.

For the Database Host, you could consider using Hash-Tables.6 These allow
you to quickly look up a table of information, given an ID for an entry. Each entry
is placed in the table using its ID. So you could use the Primary Key of a Record
to fnd or set its position (i.e. frst row, second row and third row) in a Database.
Since the ID of an entry, in a Hash-Table, could be a number or a word, the
Primary Key could also be a number or a word. There are various Professional
Database sources7 covering how to store and retrieve Records and Fields in a
Database. And there are also various Data structure sources8 describing how to
create Hash-Tables.

For the Physics Host, you could consider reading about how the laws of Physics
could be modelled in software. You could consider how the position, speed, accel-
eration, direction and mass of Game Objects would be represented in the Records,
of the Game Database. One common method uses mathematical Vectors. This may
involve either breaking the position, speed and acceleration of each Object into two
or three geometric components. So each quantity would have an X, Y or Z coor-
dinate. Or it may simply involve breaking each quantity into just two components:
one representing the direction of the Vector, and the other its size. There are many
Applied mathematics sources9 that explain how Vectors may be used to model physi-
cal quantities.

For detecting the collision between Game Objects, you could consider reading
about how you would detect the overlap of different volume shapes. These would
include the overlap of any two 2D shapes: such as a square, a rectangle, a triangle or
a circle. These would also include the overlap of any two 3D shapes: such as a cube,
a cylinder, a cone or a sphere. It would be useful to understand how you would detect
when a point was contained within a 2D polygon, when two lines intersected in 2D
or 3D space, and when a line intersected with a 3D polygon.

For determining the angle of refection, after a collision, you could again use
mathematical Vectors. If the momentum of each Object were represented by a
Vector, then you would be able to handle each collision simply. So when two mobile
Game Objects collided, you could transfer the Vector, from one Object to the other,
to produce the resultant angle of refection. Similarly, when a mobile Game Object
rebounded off the surface of another Object, Vectors may be used. A common
method involves using the impact Vector of the Object, and the Normal Vector of
the surface, to calculate the resultant Vector after collision. The surface may be one
side of a 2D shape, or one face of a 3D polygon.

133 The Software Production Process

In order to stop static items from moving, after collision, some Computer Games
simply do not apply any momentum to the item. Instead, the game preserves the
momentum of the moving body, when it rebounds off the surface of a static item. Or
the game reduces the momentum by an amount proportional to the speed of the mov-
ing body. There are several Physics sources that cover how the motion of physical
bodies may be simulated in a Computer Game.

For the Graphics Host, you could consider studying how the 2D shapes or the 3D
models would be projected from 2D or 3D space, onto a computer screen. This usu-
ally involves using mathematical Matrices. You could use Matrices to determine the
position of each shape from a viewpoint, in 2D or 3D space. You could use Matrices
to project the vertices, of the 3D models, through the viewpoint, onto the 2D space
of the computer screen. You could also use Matrices to move and rotate the shapes or
the models. There are many Mathematics sources11 that discuss how Matrices may
be used to perform projections, and to move 2D shapes or 3D models.

To draw 2D images, or 3D models, it would be helpful to understand how the
polygons would be flled in using Textures and Texture coordinates. You could
also read about how the data for the vertices, Textures and Textures coordinates
could be stored in the Database. There are numerous Computer graphics sources12

that describe how 2D images, and 3D models, are displayed on screen, and how to
achieve visual effects.

Finally, for the Sounds Host you may fnd it useful reading about Digital Signal
Processing. This is a large topic. But only a few methods within it are necessary for
creating a reasonably broad range of sound effects that could be used in a Computer
Game. These include methods that reverberate a sound, flter out different frequen-
cies of a sound or distort the sound. These also include methods that mix or con-
catenate two sounds together. It would also be helpful to fnd out the different ways
in which a sound stream could be encoded and stored in the Database. There are
several Sound engineering sources13 that cover Digital Signal Processing.

4.1.5 DOCUMENTATION TOOLS

An important part of the feasibility test would be the tools which can be used to
produce documentation for the test. These include the tools which the Game
Programmers would need to plan the software they would write, tools the Game
Artists would need to plan their artwork, tools the Game Designers would need to
plan their changes to the game design, tools the Sound Designers would need to plan
their sounds and music, and tools the Game Testers would need to plan their execu-
tion of the test and generating a report.

Explicitly documenting the different designs you produce would have three
advantages. Firstly, it would make it easy for you to refer to these designs to imple-
ment any component of the software. This may be a software module, a piece of art,
a piece of sound or the Game Database. Secondly, the documentation would help
other people understand the components, if they were required to maintain it, or
improve it. The documentation would help them understand the inter-dependencies
between the components. Finally, the documentation could be used to test each com-
ponent once it had been built.

10

134 Event-Database Architecture for Computer Games

To produce these documents, you would need tools that enabled you to write
simple articles and check the spelling. You would be able to highlight words, with
different fonts, so that you could help the reader recognise and differentiate between
passages and topics. You may also be able to draw simple annotated diagrams, fow-
charts or tables, with these tools. This would provide you with a concise description
of any designs you created.

Either many of the documents you produced would be interrelated. Or many parts
of each document would be interrelated. This would be because the components
described by each document, or each part of a document, were interrelated.

For example, the menus described in a game design would be interrelated. Also
the software modules of a technical design would be interrelated. So after changing
any one document, or any one part of a document, you may need to change other
documents, or other parts, as well.

It would be very useful, but not necessary, to fnd a tool that could help you do
this automatically. The tool would allow you to link documents, or different parts
of one document together. So that when you changed a document, or part of one, it
would either list all the other documents, or other parts which had to be changed.
Or it would automatically perform these changes somehow. Perhaps, the tool would
allow you to describe the relationships between the documents, or different parts.
And it would use this description to perform each change.

For example, the tool may allow you to link each occurrence of the name of a cer-
tain topic, mentioned in a document. So that when you change the name in one part
of the document, all other occurrences of that name would automatically be changed
as well. Or the tool would keep a record of the position in the document, of all the
unmodifed names, which you could study at a later date.

There are many commercial software tools that would provide you with some
or all of these capabilities. There are also Free software14 ones, such as OpenOffce
(https://www.openoffce.org/). There are various Electronic documentation sources15

that provide a useful introduction to this software.

4.1.6 PROGRAMMING TOOLS

You could use whatever programming language you wanted to write each Host
Module or Game Object. Typically, most people would choose one which could be
used across different computer hardware. Two common favourites are the program-
ming languages ‘C’ or ‘C++’. You could also use Python Script, Javascript, Java,
WebGL, HTML, Perl.

There are many written Programming sources16 on these two languages. There
are many commercial tools which could be used to write software in ‘C’ or ‘C++’.
There are also Free software ones, such as the GNU C Compiler or GCC. There are
several Compiler sources17 that explain how to use GCC.

It would be worth investing in Revision Control Software18 too. This could be
used to keep an archive of the computer fles used to build the game. This would give
you the option of going back to previous versions of the software, if the latest version
were to become corrupted, discarded or lost. You could also use this tool to compare
and merge differences in any two versions of the game, or a given software module.

https://www.openoffice.org/

135 The Software Production Process

Or any two computers fles containing artwork or sound (provided these fles were in
data format based on text).

There are numerous commercial tools that could keep this archive. There are also
Free software tools, such as the Concurrent Versions System or CVS. There are a
few Revision Control sources19 that describe CVS and its uses.

4.1.7 SOFTWARE LIBRARIES

The Events Host, Objects Host and Physics Host would not require third-party
software libraries. You could implement these using only a programming language,
and the background research carried out before starting to implement the Event-
Database Architecture.

However, the Database Host would require a File library. This would enable it
to access whatever storage media the computer hardware had. The Game Database
would be stored on this media and loaded into the computer memory by the Database
Host, when it was set up. There is a standard File library that several computer
hardware use. This would be described in the Programming sources that you may
read, and other File library sources.20 Although this File library was meant to pro-
vide a standard Interface for any device connected to a computer, hardware vendors
typically limit its use to some storage media, and not for others. Or there are subtle
variations of the library, or extensions added to it. So each hardware vendor provides
their own version of the library, and any other software libraries required for their
storage media. These come with the proprietary tools they supply with their propri-
etary hardware, for developing software on it. And these tools are accompanied by
the User Manuals describing the libraries.

Alternatively, instead of attempting to create the Database Host from scratch,
you could use a software library, created by a third party for hosting a professional
Relational Database Management System or RDBMS. This would allow you to
store any Relational Database, including the Game Database partly in the com-
puter memory and partly on the storage media. This would allow you to quickly
read, write and query Database Tables, Database Records and Database Fields.
Ideally, it should be small and effcient enough to run on computer hardware with
limited resources, which is more often than not the case with hardware that runs
Computer Games. You can read about this in various RDBMS resources.21

The Graphics Host would need a Graphics library to display 2D images and 3D
models on the screen. Although each vendor, again, provides their own, different
library for their hardware, a standard library is available. This is called the Open
Graphics Library or OpenGL®. It has an open Interface, which is available for many
computer hardware. It automatically uses many of the techniques you would come
across doing background research. So you would fnd that it may not be necessary to
implement much of the techniques, for displaying 2D images or 3D models, yourself.
The software library already does this for you. There are several Graphic library
sources22 that cover OpenGL.

Although the Graphics library may well perform much of the mathematical tech-
niques used to display images, it may omit others that you might want to use else-
where. These would namely be those techniques, involving Vectors and Matrices,

136 Event-Database Architecture for Computer Games

you would use to build the Physics Host. For this reason, you may fnd it useful to
acquire a Mathematics library for both the Physics Host and the Graphics Host.
There is a standard library available, that you may come across when reading the
Programming sources. But it does not include the more advanced techniques you
may want to use.

The Sounds Host would need a Sound library to play sound and music, on the
computer hardware. There is no standard library available. Each hardware vendor
provides their own. However, there have been recent attempts to establish a standard.
This is called the Open Audio Library or OpenAL®. There are a few Audio library
sources23 that discuss OpenAL.

Finally, the Game Controllers Host would require a Game controller library.
Again, there is no standard library available. Each hardware vendor provides their own.

Nevertheless, there may be a software library available, for some computer hard-
ware, that combine the ability to interact with Game Controllers and play games,
with other forms of entertainment. These include playing videos or music, on the
hardware. There are commercial versions of such libraries. And there are also Free
software ones, such as the Simple DirectMedia Layer or SDL. There are a couple of
Multimedia library sources24 that cover SDL and how you could use it.

Whenever a hardware vendor does not provide a software library, or there is no
standard library, at hand to easily build a Host Module, it merely shifts the burden.
You would then have to write that software library yourself, before you built your
Computer Game.

4.1.8 ART TOOLS

To create 3D models, you would need a 3D modelling software. This would allow
you to create models using a mesh of polygons. It would allow you to fll in the poly-
gons, using whatever Textures you choose. You would be able to view each model
before exporting its vertices, Textures and Texture coordinates to a computer fle.
The data from that fle would then be added to a Record, in the Game Database.

The modelling software would also allow you to create 3D animations. Either
you could set the pose of the whole 3D model, for each Frame. Or you could just
use the skeleton of the model. You would be able to specify the different positions
of the skeleton, in each Frame of the animation. After watching a preview of the
result, you would then be able to export the positions of the model, or its bones, in
each Frame, to a computer fle. This data could then also be added to a Record in
the Game Database.

There are several commercial software available which give you all these fea-
tures. There is also a Free software package you could use, that is available for many
different computer hardware, called Blender®. There are good Computer Aided
Design sources25 that describe these tools.

To create 2D images, you would require different software. You would need a
Digital imaging software. This would allow you to create any image, or set of images
in an animation sequence, using whatever colours you choose. You would either
be able to use a colour palette, and a set of colour indices, to draw the pixels of the
image. Or you would be able to create the image by specifying the individual red,

137 The Software Production Process

green and blue colour components of each pixel. The former method saves more
space, in the computer memory, than the latter. The choice of method would depend
on how much detail you wanted there to be in the image. But the methods available
may depend on the computer hardware the game was for. Some hardware only per-
mit one method.

The Digital imaging software would allow you to export the size of each image,
its colours and any accompanying colour palette, to a fle. You would then be able to
add that data to a Record in the Database.

There are several commercial Digital imaging software available. There is
also a Free software package you could use called the GNU Image Manipulation
Program or GIMP (https://www.gimp.org/). There are numerous Digital imaging
sources26 that cover these tools.

4.1.9 DATABASE TOOLS

There are fve sets of tools which would be required to manage the Game Database.
The frst set would be used to convert the data, from the computer fles produced
by any third-party software. This third-party software may be, for example, used to
create 3D models. The data would be converted, into the data format used by the
Database, to create new Records. The second set of tools would be used to add these
new Records, from the converted fles to the Database. The third set would be used
to view and edit the Records in the Database. The fourth set would be used to extract
the Records, from the Database, into computer fles. The ffth set would be used to
convert the extracted Records, from these fles, back into the data formats supported
by the third-party software.

The last set of tools would allow you to reverse the process of the frst set. Similarly,
the fourth set would allow you to reverse the process of the second set. Being able to
reverse the process would give you the same advantages as using Revision Control
Software. This would namely be the confdence to correct errors.

For example, it would give you the fexibility to work with the Database Records
in whatever data format was best suited to viewing or editing that data. Viewing
Records which held 3D models, or 2D images, would be best done with the software
tools that were used to create these models and images.

Another advantage of being able to reverse the process would be that you could
keep the data in an intermediary format. This would be useful when the data for-
mats changed.

For example, suppose the format of some of the Database Records was about to
be changed. You could use the fourth set of tools to extract these Records, into com-
puter fles. After the data formats were changed, you would modify the second set
of tools to add the extracted Records, back into the Database. The new tools would
add any new Fields, to the Records, with sensible default values. And the tools would
omit any Fields that were no longer required.

A reversible process would have yet more advantages. You would not need to
keep an archive of all the computer fles which were used to build a version of the
Database. You would only need to keep an archive of the Database and the tools.
If you wanted to go back to work on a past version of the game, you would get its

https://www.gimp.org/

138 Event-Database Architecture for Computer Games

Database and its tools from the archive. And you could use these old tools to recre-
ate the old computer fles.

There are many commercial Database tools available, which could be used as the
third set of tools. There are also some Free software ones available, such as MySQL®

(https://www.mysql.com/), which could also be used. There are various Relational
Database management sources27 that discuss how to use MySQL®.

There may be some commercial Database tools which combine all fve sets of
tools in one. But typically, you would have to write your own software tools for the
frst, second, fourth and ffth sets. To do this, either you would need to understand
the data formats of the fles exported by third-party software. Or you would need to
fnd out how you could control the data formats of the fles exported. These informa-
tion would normally be explained in the User Manuals of these third-party software.

4.1.10 OPEN DATA FORMAT

You would have to choose an open data format for describing the Database Tables,
Records and Fields of the Game Database. The advantages of using an open data
format have already been outlined in Chapter 2.

Another advantage of using an open data format for this is that it allows you to
merge one branch of changes to Game Database with another branch. Often in the
Computer Games industry, a Software Repository is used to keep track of changes
made to the fles used to build the game. A Software Repository is a recorded
archive of changes made to the fles used to build game. It allows you to monitor the
amount of changes going in, recover any lost changes and track who is responsible
for changes and when these changes were made. This is very useful since often, as
already mentioned, the Software Production Process defaults and degenerates into
a Software Evolution Process with lots of changes being made rapidly, with little or
no records being kept. A Software Repository helps you mitigate this to a limited
extent by keeping some records of the changes. When the Users submit changes to
the Repository, they normally have to include one line describing those changes. It is
not ideal, but it is better than nothing.

However, the limitation of this is when there are so many changes going into the
game, which often confict with each other, the process of building the latest version
of the game, from the Software Repository, becomes very unstable.

At this point, you can mitigate the situation by taking a copy of the fles in the
main branch of the Software Repository, and putting them in another Repository,
which is called a Child Branch. You can then assign a subset of the staff to work
on a new feature in this Child Branch. This reduces the number of staff working on
the main branch and helps stabilise the situation. After that new feature has been
completed, you can then merge the changes in the Child Branch back to the parent
branch or main branch.

Nevertheless, this is not trivial especially with commercial game-engines. The
Game Database of commercial game-engines is primarily made up of fles encoded
in a closed proprietary format. Especially, the 2D images and 3D models created
by the Game Artists. That means that when you branch the fles used to build the
game and make a lot of changes to the branch, you cannot merge the results back

https://www.mysql.com/

139 The Software Production Process

to the parent or main branch. Especially when those changes include changes to the
artwork.

But when the entire Game Database is stored in an open data format, you can
merge the branches. The Game Database is interoperable with other tools. That
means you can create tools to merge Game Database in one branch with another
branch. Or the software typically used to manage the Software Repository can do
this for you. So long as the open data format is a Text Format based on ASCII28 char-
acters, as supposed to a Binary Format.

One example of a format you can use to store 2D images is SVG Format.29 One
example of a format you can use to store 3D models is FBX Format.30 The latter
format comes in two forms. One is a Binary Format. And the other is a Text Format.
You can use the Text Format. Both SVG Format and FBX Format are only suitable
for 2D images and 3D models. You cannot store an entire Database in these two
formats. So, for the rest of the Game Database, you will have to use another data
format.

One such data format which you can use for the rest of the Database is the
Extensible Markup Language or XML Format.31 But, unfortunately, there are no
agreed standards on how to use these to describe Databases. So this means that for
creating a large, central Database, and being able to edit it using Database soft-
ware, you would not be able to use these data formats. For example, Relational
Database Management Systems that support XML Format are IBM DB2, Microsoft
SQL Server, Oracle Database and PostgreSQL.

There are also other open data formats such as JSON Format32 that could be
used to describe a Database. But JSON describes Database or Data Structures in
a hierarchical way or hierarchical model. Each Database Table can have a vari-
able number of attributes or Database Fields. Each Database Field in turn can
either

• be a value of any size and any type (i.e. a word or a number or collection of
words and numbers); or

• be a variable list of values of any size and any type; or
• be a parent of a variable list of other Database Fields; or
• be a parent of another Database Table.

And these children in turn can be parents of other Database Fields or other
Database Tables. And so on and so on in a hierarchy. There is an example of how
information about the quests available in a game would be stored in JSON Format
in Figure 4.11.

This hierarchical model conficts with a relational model used by Relational
Databases, such as the Game Database of the Event-Database Architecture. In
a relational model, there is a fxed number of attributes or Database Fields in each
Database Table. And each Database Field in turn can either

• only be a value of fxed size and one type (i.e. only words or only numbers
or only list of words and numbers); or

• only be a list of values of fxed size and one type.

140 Event-Database Architecture for Computer Games

FIGURE 4.11 A table of quests available to a player in hierarchical model of a Database
in JSON Format.

A Database Field cannot be another Database Table as shown in Figure 4.12.
One solution to this confict is to commit to a hierarchical model and use a

Database that is only based on JSON Format such as a NoSQL Database like
Oracle NoSQL Database, or Azure Cosmos DB. You just have to be careful that you
do not create a hierarchy i.e. you never have a Database Field that is a parent of other
Database Fields or other Database Tables. To ensure that the Database still matches
the relational model of the Game Database of the Event-Database Architecture.

The advantage of a NoSQL Database is that you can create very fexible Database
Tables. With very fexible attributes or Database Fields which can hold values of any
type of data. This can be useful when you are unsure about the exact Data Structure
you need for your game.

The disadvantage of a NoSQL Database is, as the name suggests, you cannot use
the standard programming language for querying Databases which is the Structured
Query Language or SQL. Each one has a non-standard programming language for
querying it and therefore has fewer books available to explain how to use it.

Another solution to this confict is to have hybrid model. That is a Database that is
based both on a hierarchical model and a relational model. The part of the Database
based on relational model is in CSV Format.33 And part based on the hierarchical model
is in JSON Format. An example of Database which uses a hybrid model is MariaDB.

141 The Software Production Process

FIGURE 4.12 A table of quests available to a player in a relational model of a Database in a
Comma Separated Format or CSV Format.

Another solution is to commit to a relational model based solely on comma-separated
format or CSV Format and ASCII characters. Many Relational Database Management
Systems support this format, with minor variations. Examples of Database which use a
relational model and a CSV Format are Oracle DB and MySQL DB. But the problem
with embedding Data Structures in JSON Format, in other Data Structures in CSV
Format, is that there is a confict between the Formats which can lead to confusion.
Both Formats use the comma character, to separate Fields. And both enclose the names
and values of Fields in double-quotation marks. This leads to confusion when you
come across a comma or double-quotation mark in a middle of a Database Record in
CSV Format, which itself contains a Field whose value is a Data Structure in JSON
Format. Is the comma part of the JSON Format embedded in the Field? Or is it part of
the Database Record that contains that Field, in CSV Format?

In CSV Format, the entire Database would be described by one table made up
of ASCII characters. The data in each Field would be made up of ASCII characters.
Each Field, in a Record, would be separated by a comma (,) character. And each
Record would terminated by a Newline character.34 The number of columns in the
table would be determined by the longest Record in the Database. Each Record
would use as many Fields as it required, from the left to the right column of the table.
Any excess Fields, which it did not use, would be left empty and would not contain
any ASCII characters.

When using the CSV Format to describe the Game Database, the frst Field in
each Database Table would be Primary Keys. These should be unique and could be a
number or a word. The rest of the Fields would hold whatever data that Table required.

The frst Database Table in the Game Database would give a brief description
of all the other Database Tables. The frst Field of this Table would of course be
the Primary Keys. These would be unique names for each of the other Tables in the
Game Database.

142 Event-Database Architecture for Computer Games

The second Field would be used to give a brief description of the Records in each
Table. The description could just be the name of the Abstract data contained in the
Table e.g.

Primary Events Table
Secondary Events Table

Or it could be the name of the encoded data contained within the Table e.g.

Sound Stream Table
Animated Vertices Table
3D Models Table

Or it could be a description of the Fields in the Record e.g.

2D Polygon ID;2D Vertices;2D Normals
3D Model ID;3D Vertices;3D Normals

Either way, the description would not be used as a substitute for a full description
of Database Tables in some kind of data design.

In order to create Fields which contained a comma (,) or a Newline charac-
ter, a special Escape character35 would be used. Whenever this character was
encountered, it would mean that the next character was part of the current Field.
If the next character were the Escape character, then that character would also
be part of the current Field. So, for example, to include the Newline character
in a Field, you would simply precede it with the Escape character. Similarly,
to include a comma in a Field, you would also precede it with another Escape
character. For the Escape character, most Database software use the back slash
(\) character.

However, some Database software do not recognise Escape characters. This
is the minor variation in how these software support the CSV Format or comma-
separated ASCII format. To accommodate these variations, each comma or Newline
character, in a Field, would have to be represented by a special sequence of char-
acters. You could use a sequence which begins with the Escape character followed
by the ASCII code number for a comma or a Newline character. Or you could use
something else. Either way, it would not matter if the Database software ignored the
Escape character. So long as the game and all of its tools could identify the Fields
in each Record and knew what the special sequences were, then the integrity of the
Database would be kept intact. This would be provided, of course, that neither the
game nor the tools altered these sequences.

Thus, you could use the CSV Format to construct a computer fle for your
Game Database. When the Database Host loaded each Record, from this fle, the
Database Host would recognise the type of data stored in each Field by the char-
acters used within it. Remember that each Field could either be a number, a group
of words or a Primary Key of another Record. A Field could also be a list of either
numbers, groups of words or Primary Keys.

143 The Software Production Process

If a Field were a number, it would be made up of a single word of numerical
ASCII characters, along with one optional minus (−) or decimal point (.). If such a
Field contained a decimal point, then it would be a foating point number, as sup-
posed to a whole number.

If a Field were a group of words, it would contain any readable, alphanumerical
ASCII characters. This means any alphabetical, numerical or punctuation charac-
ters. Furthermore, it would contain at least two characters, and one of the characters
would not be a numerical character.

If a Field were a Primary Key, it would begin with a readable, non-alphanumer-
ical ASCII character. This means a character like hash (#), ampersand (&), asterisk
(*), dollar ($) or pound (£). This character would be followed by either numerical
characters or alphanumerical characters. This would depend on whether you were
using numbers or words as Primary Keys. The non-alphanumeric character at the
start of the Field would, however, be ignored when the data was read into the com-
puter memory. It would only be used to indicate that the Field was a Primary Key.

If a Field were a list of numbers, groups of words or Primary Keys, it would
contain two or more entries. For the sake of consistency, each entry in the list
would be separated using the same principle used to separate Fields, in Records.
This means each entry would be separated by a comma (,) character, after the Field
had been extracted from the Record. Therefore, before the Field was extracted from
the Record, each entry should be separated by an Escape character followed by a
comma (,) character.

Similarly, if a comma (,) were meant to be part of an entry in a list, then it would
be preceded by an Escape character, after the Field had been extracted from a
Record. This means, before the Field was extracted, the comma (,) should be pre-
ceded by three Escape characters.

If a Field were meant to be a list of numbers, then all the entries in the list would
be like a single numeric Field. That is to say, each entry would be made up of only
numerical characters, with one optional minus (−) or decimal point (.) character.

Similarly, if the Field were meant to be a list of groups of words, then all the
entries in the list would be like a single alphanumeric Field. That is to say, each entry
would be made of at least two alphanumerical characters, one of which was not a
numerical character.

Likewise, if the Field were meant to be a list of Primary Keys, then all the entries
would be like a Field that contained a single Primary Key. That is to say, either each
entry would begin with one non-alphanumerical character, followed by numerical
characters. Or each entry would begin with one non-alphanumerical character, fol-
lowed by alphabetical characters. Again, this would depend on whether numbers
or words were being used as Primary Keys. Furthermore, the non-alphanumerical
characters would be ignored when determining each number or word in the list.

Any list that was meant to be empty, when the game began, and flled in as
it progressed, would not be left empty. Instead, space would be reserved in the
Field, for this list. This would enable the Database Host to know how much
space, of the computer memory, to reserve for the entire Database. So the Field
would either be flled with a list of zeros (0), if it were going to hold a list of num-
bers. Or it would be flled with a list of blank space characters, if it were going to

144 Event-Database Architecture for Computer Games

hold a list of groups of words. Or it would be flled with a list of zeros (or blank
spaces), each prefxed by a single non-alphanumerical character, if it were going
to hold a list of Primary Keys.

The number of entries in the list would indicate its maximum length. The number
of zeros, in the frst entry, would indicate the minimum and maximum values of all
the numbers in the list. Similarly, the number of blank space characters, in the frst
entry, would indicate the maximum length of all the groups of words in the list. And
likewise, the number of zeros (or blank spaces) prefxed by a single non-alphanu-
merical character, in the frst entry, would indicate the possible values (or maximum
length) of all the Primary Keys in the list.

For example, if the frst entry in a list had fve zeros, then the numbers could range
from −99999 to 99999. If the frst entry had fve blank space characters, then all the
groups of words in the list could each be up to fve characters long. If the frst entry
began with a hash, followed by 20 blank spaces, then all the Primary Keys in the list
could each be up to 20 characters long.

Amongst the hardest set of data to hold in a Database, based on comma-sepa-
rated ASCII format, would be information that could be used to build a Graphical
User Interface, such as 2D images, 3D models, Textures, points in 2D or 3D space
and so on. Since the ASCII format was not meant to describe such Interfaces, but
simple User Interfaces based on text. However, there are also several open data for-
mats, based on ASCII characters, that could be used to hold graphical information.
These include the SVG Format and the X PixMap Format.36

There are several CSV Format sources37 that describe how CSV Formats could be
used to construct a Game Database. And SVG Format sources38 that describe how
the SVG Format could be used to describe graphical information. And X PixMap
Format sources39 that describe how the X PixMap Format could be used to describe
graphical information.

4.1.11 SOUND TOOLS

To record the audio for a game, into a digital data format, and manage that data, you
would use four types of tools.

The frst tool would be an electronic device used to record live sounds, onto
a suitable media (e.g. Digital Audio Tape40 or DAT or Secure Digital Card41 or
SD Card or Secure Digital High Capacity Card42 or SDHC Card). This could be
used to either record artifcial sounds indoors in a controlled environment, like
a sound studio. Or it could be used to record the natural sounds outdoors in an
open environment, or an activity, that was going to be portrayed in the Computer
Game: such as the roar of a crowd in a stadium. A good example of such a device
is the

Zoom H4N Audio Recorder

with a professional external microphone e.g.

Rode NTG4+

145 The Software Production Process

and a windshield attachment e.g.

Rode Blimp

to reduce unwanted environmental sounds outside such as the wind.
The second tool would be used to convert these sound recordings, from a media

(such as DAT, SD, SDHC or Compact Disc), in a closed or proprietary data format
(e.g. MP3 or WAV Format) into an open data format used for computers (e.g. Pulse
Code Modulation43 or PCM). There are Free software tools which could do this,
such as CDEX and GRIP. There are a few Digital recording sources44 that discuss
these tools.

The third tool would be optional. Some computer hardware use a special data
format for playing back sounds. The hardware vendor would normally provide you
with the tool required to convert the sounds, from a standard data format, into this
proprietary data format. This tool normally comes with the proprietary software
library, from the hardware vendor to the Software Developer, to develop games for
that proprietary hardware. Once the sound was in the correct data format, you would
be able to add it to a Database Record of the Game Database, using the Database
tools described earlier.

The fourth tool would also be optional. You may either want to listen to each
sound, separately or mixed with others, prior to adding it to the Database. Or you
may want to flter out any unwanted accompanying noises or distort the sound.
There are many commercial tools which could be used to mix, alter and listen
to such previews. There are also Free software tools, such as Audacity (https://
www.audacityteam.org/). There are a few Digital playback sources45 that cover
these tools.

4.1.12 RUNNING THE TEST

The steps for building the game and the steps for running the test of the game, in the
feasibility study, have already been described in the previous subchapters

Step 1: Feasibility Study/Vertical Slice and Designing the Test

If the fnal step fails, and the game fails to pass the test, then you may need to go
back to the previous steps and rebuild the game. To fx the errors reported when the
test failed.

How far you would go back in the steps would depend on the errors that were
reported. The steps break down into three basic phases which are, in chronological
order, building the Game Database, building the Host Modules and building the
Game Objects.

If the errors were related to the Game Objects, then you would not have to go
back that far. If the errors were related to the Host Modules, then you would have
to go further back. If the errors were related to the Game Database, then you would
have to go back even further. And after that you would repeat all the steps again
forwards leading up to the fnal step i.e. testing the game.

https://www.audacityteam.org/
https://www.audacityteam.org/

146 Event-Database Architecture for Computer Games

You may need to repeat this cycle several times before the game successfully
passes all the steps of the test without any errors. At which point the time the fea-
sibility study ended should be recorded in the game design, alongside the time the
study ended.

Now there are some errors you will encounter that you cannot foresee and would
be outside of your control: from the third-party software tools, software libraries,
computer hardware or human error.

But there are some errors or conficts though which you can foresee and control.

4.1.12.1 Database Host, Graphic and Sound Memory Errors
There could be a potential confict between how the Database Host would be
designed, and how some computer hardware display graphics or play sounds. Some
hardware store graphic and sound data in a separate space, outside the main com-
puter memory, where the rest of the game resides. This means that either the Game
Database would need to be split between the main computer memory, the graphics
memory and the sound memory. Or some Database Records or Database Fields
would be duplicated in the main memory, the graphics and the sound memory.

In either case, the Database Host would need to intelligently decide when the
Database Records or Fields needed to be moved, or copied, from the main computer
memory, to the graphics or the sound memory. It would also need to decide when
these Records or Fields should be transferred back into the main memory or replaced
in the graphics or the sound memory.

This problem could be solved using the Records in the Database, which would
indicate the graphic or the sound data being used. Remember that the description
of the Graphics Host and the Sounds Host included three Records. Two of these
would hold a list of 2D or 3D Game Objects being displayed. The third would hold
a list of sounds being played.

So when any graphic or sound data were accessed from the Database, the Database
Host could use these three Records to check whether the data were in the main com-
puter memory. If the data were not, then the Database Host could copy the data from
the graphic or sound memory into a Database Record or Field in the main memory.

For example, if a Sound Stream Record was added to the list of sounds being
played, the Database Host could automatically copy the sound stream, from the
Database Record in main memory to the sound memory in the Sound Card. And the
Sounds Host would start playing that sound stream on that Sound Card.

Alternatively, when a new entry was added onto one of these three Records, the
Database Host could automatically copy the appropriate data, from the Database
Record or Field in main memory to the graphic or the sound memory. And then
remove it from the main memory to make space, assuming that there was enough
space in the graphic or sound memory to hold that data. And after it had been used,
the Database Host would copy it back from the graphic or sound memory to a
Database Record or Field in the main memory.

4.1.12.2 Database Host and Limited Memory Space Errors
A similar technique could be used if the Game Database proved to be too large to
load into the main computer memory. The Residents List Record and Absents List

147 The Software Production Process

Record in the Database could be used to keep track of the Records which were, and
were not, loaded into the main memory.

When a Database Record was loaded into the main memory, you could add it to
the Residents List Record.

When the amount of space taking up by Database Records residing in the main
computer memory went over some limit, you could remove the oldest unused or least
frequently used Database Record from the main memory to make space. And add
that Record to the Absents List Record.

When a Record was accessed, which was not in the main memory, the Database
Host would then read it from the media the Database was stored on. Just as for the
previous problem, the Database would need Records reserved in it to contain these
temporary data.

In such cases, most professional Database software read blocks of Records, rather
than individual Records. This to limit the number of times the software has to keep
accessing the storage media, by assuming that it may soon want to read the neigh-
bouring Records as well. But you should only do this too after you have tested your
software and found that accessing one Record at a time was the main cause of the
limits to the performance of the software.

4.1.12.3 Database Host and Restricted Access Errors
To ensure that each software module, which used the Game Database, got the
right Database Table, Record or Fields, there are at least two systems that could be
applied. Either each Host Module (or Game Object) could be carefully designed so
that it would only access Records whose data format it knew. Or the Database could
be designed so that it had extra information, which identifed the types of Records
stored in each Table, and the types of Fields in each Record.

The frst method should be possible if the Records were carefully designed and
documented. Similar Records should begin with the same set of Fields, and those of
the same type should have exactly the same arrangement of Fields. This means that
those who wrote the software modules could be confdent that the Fields (i.e. the
frst, second and third Field), within a Record, were of a certain type.

The second method would mean adding extra Records or DATABASE META
DATA RECORDS to the Database. Each would contain the Primary Keys of all the
Records, in the Database, of a particular type. Each Meta Data would also include
a list, describing the different Fields in these Records. The order of the descriptions
would match the order of the Fields. And each description would indicate whether
the corresponding Field was a number, a group of words or a Primary Key. Or the
description would indicate whether it was a list of numbers, groups of words or
Primary Keys.

So when each software module accessed the Game Database, it would pro-
vide the Database Host with the Meta-Data or type of Record it wanted, as
well as its Primary Key. The Database Host would then use the Meta Data, to
check that the Record was the correct type, before sending it back to the module.
Once it had the data, the module could also use the Meta Data to fnd the data it
wanted. It could use the Meta Data to fnd the position of the Fields containing
that data.

148 Event-Database Architecture for Computer Games

4.1.12.4 Database Host and Corruption Errors
Further additions may be made to the Database Host to resolve problems with errors
due to corruption of the data. Assuming there were no errors in the Game Database,
when it was originally created, it could be used to detect and correct corruption in
the data that occurs. Either when running the game in computer memory or when
installing the game.

This could be done by simply adding Database Meta Data Records or DATABASE
CHECKSUM RECORDS that contained the Checksum46 for Database Tables or
Database Records. This Checksum would be the total value of the contents (i.e. numer-
ical value of the characters or numbers) in the Database Table or in each Record. You
could then detect corruption in the Game Database, when either the current total value
of the Database Table differed from the Checksum for the Table. Or when the current
total value of the Fields in a Record differed from the Checksum for that Record. And
you could recover from the corruption by simply reading back the Database Table or
the Database Record, from the storage media containing the Database.

A software procedure could be added to the Database Host for achieving this.
This could read back one or more Database Table or Records of the Game Database,
from the storage media it was stored on. Other software modules would either use
this procedure when these detected corruption in the data. Or this may be used when
a module required the data in a Record to be reset. So that the module could repeat
some cycle involving that Record. For example, a module using one or more Records
to display the animation of a character, made up of a repeated cycle of Frames, may
use the procedure. To reset those Records, when each cycle had been completed.

And when installing the game, you can detect corruption in the Game Database,
by similarly checking the Database Checksum Records. Suppose the Game World
was divided into several stages, and each stage had a STAGE OBJECT LIST
RECORD listing all of the other Records which should be loaded in memory to
play in that stage. And all the Stage Object List Records were in a Database Table
called the OBJECTS LOADED TABLE. For examples of Stage Object List
Records and an Objects Loaded Table, please refer to Chapter 1 in the second
book in the series, Event-Database Architecture for Computer Games: Game Design
and Nature of the Beast, and the subchapter entitled 1.4.19 Objects Loaded Table”.

Now after the game is installed, the Database Host could automatically check,
whether all the Records required to play in each stage were present. By checking the
Checksum for the each of the Stage Object List Records. If a Record or Game Object
were missing from the Stage Object List Record, then the Checksum for that Record
would reveal this. And if a Stage Object List Record were missing from the Objects
Loaded Table, then the Checksum for that Table would reveal this. And if a Game
Object or any of its Events were missing, then Checksum of the Database Table of
Game Object Records or Event Records would reveal this. And any tool, outside of
the game, can check the integrity of the Database, due to the open data format the
Database would be written in. This includes any tool that either installs the game from
a storage media or tests the game before it is put on some storage media and released
to the public or tests the game before it goes through some long process of putting it on
some platform with less resources than the one the game was developed on. However,
in contrast, there is no such tool which can check the integrity of the Game Database

149 The Software Production Process

of commercial game-engines. There are no such tools that can check the integrity of
the Game Database after it has been installed from the storage media, before it is put
on some storage media, or before it is transferred to another platform. There are only
tools which check the integrity of the compressed archive, from which the game and
the Game Database was installed. But that does not mean that the Game Database
is missing something or is corrupted. That only means the compressed archive is cor-
rupted. If the Game Database is missing something, then you will only fnd out when
you play the game, and you reach the point where that missing data was used. And
this may appear when it is too late: after a game has been published and released to
the public.

4.1.12.5 Events Host, Physics Host and Recursion Errors
The Events Host may also be modifed to help mitigate errors. These would namely
be errors that might occur because of a long, recursive sequence of Events. Such a
sequence would keep the Events Host locked up, indefnitely, repeatedly sending
the same cycle of Events. However, a limit could be set as to how many Secondary
Events may be sent in any Unit of game time. And if this limit were reached, the
Events Host could store the remainder. These could be stored in the Delayed Events
List Record, in the Game Database. The stored Events would have no time delay
and be placed at the front of the list of delayed Events. So that, in the next Unit of
game time, the stored Events would be sent frst.

Likewise, the Physics Host may also be modifed to help mitigate errors when
updating the physical properties of Game Object. If time taken by updating the
physical properties of Objects, and sending the Secondary Events generated from
these updates leads to the Physics Host exceeding the Unit of game time, then the
Physics Host will stop. It will put all of the Game Objects whose physical proper-
ties have not been updated onto a DELAYED 2D PHYSICS LIST RECORD or
a DELAYED 3D PHYSICS LIST RECORD. These Records will have the same
Database Fields as the Physics List Record. And when the next Unit of game time
began, the Physics Host will resume updating the physical properties of Game
Objects. Beginning with those Game Objects that were placed on one of these two
lists. And removing each one in turn from the two lists as its physical properties were
updated.

4.1.13 PROGNOSIS FROM THE TEST

After the feasibility study has been completed based on a cross section of the game
e.g. 10% of the whole game, it is time to make a prediction or prognosis of how long
it would take to build the whole game. Based on the time it took to build and test
the small minimal game or cross section of the game, built on the Event-Database
Architecture. This time should be visible from the times recorded in the game
design during the steps of the feasibility study as already explained in the previous
subchapter Feasibility Study/Vertical Slice.

The prediction for the time it would take to build the whole game should be
included in the game design, in the next step of the Event-Database Production
Process for the whole game.

150 Event-Database Architecture for Computer Games

This prognosis for the time it would take to build the whole game should be used
to make an assessment of whether the overall feasibility study has succeeded or
failed. Depending on whether it was possible to execute all of the steps of the test at
the end of the feasibility study. And whether this prognosis for producing the whole
game produces a time which is within the deadline for the project.

For example, suppose it took three months to build 10% of the game in the
feasibility study. The prognosis should then be that it would take 30 months or
2 years and 6 months to make the whole game. If the deadline for the project
were two years and six months from now, then overall the feasibility study has
succeeded. If the deadline for the project were 18 months from now, then overall
the feasibility study has failed.

4.2 STEP 2: GAME DESIGN

The game design in the Event-Database Production Process may be written in the
same way that it would in the normal ad hoc or Software Evolution Process used in
the Computer Games industry.

This would include a brief outline of the main themes or background story for the
game, the main characters in the story and the plot, or the goal in the game.

This would include a brief description of the different parts of the Game World,
the characters, locations, the animate and inanimate objects in each part. The rules
for playing through each part, including the rules of the beginning, middle and end
of each part. And the progression of the player from one part to the next.

And this would include a mock-up of the User Interface showing the 2D or 3D
User Interfaces, through each part. This would include rough 2D or 3D artwork
sometimes called ‘Concept Art’ showing how each location of the Game World or
each menu in the game would look like. And it would include ‘Concept Art’ showing
how some of the characters, locations, animate and inanimate objects in each loca-
tion or items on the menus would look like.

4.3 STEP 3: TECHNICAL DESIGN

The main objective of the technical design is to outline the rules for generating a
system of Events and the rules for generating a system of Game Objects that will be
used with the Event-Database Architecture to build the game.

To illustrate the application of these rules, the technical design may include exam-
ples of how popular features of the Computer Games, such as Artifcial Intelligence,
Physics, Graphics or Testing, could be implemented using these rules.

4.3.1 RULES FOR GENERATING THE SYSTEM OF EVENTS

Any system you choose for adding Events, to the Event-Database Architecture,
would exclude those Events required by the Architecture. That is to say, it would
exclude all of the standard Events set out in the description of the Architecture.
These would be, namely, those listed in the description of the Events Host and those
that were required by the Game Controllers Host.

151 The Software Production Process

The latter of these two sets would vary depending on the User Interface for the
game. Depending on the set of commands that could be issued, by the player, a dif-
ferent set of Primary and Secondary Events would be required. Remember that
any command that could be issued, through the Game Controllers, would require
one unique Primary Event to be sent when it was used. This would also require one
unique Secondary Event, which would respond to the analogue devices or digital
devices being used, and allow one of the Game Objects to recognise that command.

So excluding these standard Events, there would be at least three systems for add-
ing new Events, you could choose from

1. whenever a software procedure (i.e. the Action of a Game Object) caused
a transition in the data, stored in one or more Database Fields, it should
send one unique Primary Event, and that procedure should only ever send
that same Event;

2. whenever an Action started or ended, that Action should send two unique
Primary Events; one at the beginning and another at the end;

3. whenever a logic branch occurred in a procedure or Action, which was
neither part of a check for errors nor part of a search of the Database, two
Events should be sent; one for the positive result and one for the negative
result of that branch; and each Action should have only one logic branch.

For all three systems, you would initially write all the software procedures that
a Game Object would use to respond to its Secondary Events. You would then go
back through these procedures and insert the steps for sending Primary Events,
into each one, according to the principles of the system. All three systems would be
based on presumptions about where, in a software procedure, a change in the fow
of the game may occur.

The frst system would send a unique Event based on the presumption that a
change in data may cause a change in the fow of the game. The second system
would send an Event based on the presumption that the start or end of a software
procedure may cause a change in the fow of the game. And the third system would
send an Event based on the presumption that a logic branch may cause a change
in the fow of the game. This change could happen either within the same Game
Object or within another Object of the system.

4.3.2 RULES FOR GENERATING THE SYSTEM OF GAME OBJECTS

The choice of Game Objects, used to build a game design, would also affect the choices
available for making changes to that design. There are at least two systems for adding
Game Objects, to the Event-Database Architecture, you could choose from

1. each feature of a game should have one or more states, and one Game
Object should respond to each state;

2. each feature of a game should be implemented by one or more formulas,
and one Game Object should be used to evaluate each formula.

152 Event-Database Architecture for Computer Games

Both systems produce simple Game Objects based on presumptions about how
the features of a game may be divided into small, predictable software components.

The frst system produces predictable Game Objects based on the presumption
that every feature of a game (i.e. an item lying around the Game World, a character, a
location, a menu and a picture) may operate in different states. And that the software
module which implements that feature may be divided into separate Game Objects,
one for each state. The second system produces predictable Game Objects based on
the presumption that every feature of a game may be composed from one or more
formulas. And one Game Object may be used to evaluate each of these predictable
formulas.

For the frst system, you would begin by writing a single Game Object to imple-
ment a feature for a game. This Game Object would respond to the one or more
Events which it required to implement that feature. And it would include one or
more software procedures that would be used to respond to these Events. However,
instead of using logic branches to control the fow of its behaviour, the Game Object
would be written to operate in different states. Depending on its current state, each
software procedure would behave one way or another. And this state would be stored
in one of the Fields, of the Record which held the properties of the Game Object.
The Object would check, in its software procedures, when it needed to change to
another state, and it would change state when necessary.

After writing this Game Object, you would replace it with one or more new
Game Objects. You would begin by examining how many different states the origi-
nal Game Object used. And you would write a new Game Object for each state.
Each new Game Object would have the same properties as the original one, exclud-
ing the Field indicating its state. Each would also respond to a unique set of Primary
Events, similar to those of the original Game Object. However, each new Game
Object would only respond to those Events required for the state it represented.

Likewise, to respond to these Events, each new Game Object would use similar
software procedures to the original Object. Except that there would be two differ-
ences. The frst would be that each Object would only use the software procedures,
or parts of the procedures, used within its state. The second difference would be
that, when it was time to change to another state, each Game Object would simply
send one unique Primary Event for the new state, instead of changing a Field in the
Game Database.

When this happened, the old Game Object would respond to this Event and
disappear from the Game World. At the same time, the Game Object of the next
state would appear, in the same location as the old one. Or, if in fact these Game
Objects were never visible in the Game World, the old Game Object would simply
stop responding to the Primary Events that it shared with all the others. And the
Game Object of the next state would start responding to these Events in its place.

4.3.3 APPLICATION: TESTING

Whatever system of Events or Game Objects you choose, these should be used
consistently to add all the features of a game design. These systems should be used
regardless of whether the person writing the Game Objects thinks others may, or

153 The Software Production Process

may not, fnd those Game Objects or Events useful. That decision should be left to
the Game Producers and Designers, who would refer to the Game Database to see
what Game Objects and Events were available. And would modify the Database to
achieve the combination of Game Objects, or the sequence of Events, they wanted.

Besides providing this basic ability to easily modify the game, when the game
design changed, there would be three more advantages to using these systems con-
sistently. Firstly, it would simplify the process of translating the features, from a
game design, into the technical design. Secondly, it would prevent conficts that may
arise by people using different systems for adding Events. And fnally, it would help
debug errors in a feature of a game, since you could use these systems to deduce what
kind of Events or Game Objects were used to implement it.

The frst set of Events and Game Objects, of the production process, would be
enough to cover the initial game design. Unless this game design was completely
wrong, it would also be possible to re-use some of these Events and Objects to par-
tially implement any change. So most new Objects should try to re-use Events and
Actions from existing Game Objects. This is the reason for the inclusion of step
(14) in the Event-Database Production Process, which would identify the existing
Objects that could be re-used.

It would be useful to document each initial feature, or change, in a game design
with a fow diagram. The diagram could list the Records and Game Objects that
were used. And it could show the Events which connected the Actions of the Game
Objects together. It would also be useful for the Database Administrator to docu-
ment all the new Records, in the data design, for future reference. This would pref-
erably always be done before these were added to the Game Database, during the
design of the Records, in step (3) or step (16) in the Event-Database Production
Process.

The extent of the range of documentation available would be the difference between
the process for producing games, used by the Event-Database Architecture, and
a completely formal production process. In a formal process, such as the classic
software production life cycle, when changes need to be made to a game, you would
have to revert back to step (1). This would entail modifying the high-level game
design, the low-level technical design, and perhaps the data design and the tools
design. Finally, you would build the new components required to implement the
changes, test each new component separately, before combining these together.

However, in the Event-Database Architecture, you would not need to revert
back to step (1). You would only need to update the data design, implement and test
each new component, before using these to change the game. The reason for this has
already been mentioned when the initial problem, the Event-Database Architecture
was meant to solve, was described. Once the data was well-defned, it would be easy
to deduce how any software which used these functioned or should function. This
would only require a general knowledge of the purpose of that software.

Nevertheless, if you preferred, you could keep all the design documents up-to-
date. A formal production process, such as the classic software production life cycle,
would still beneft from the Architecture.

An important part of the classic software production life cycle would be the
testing of the software at the end of it. This would involve testing every possible

154 Event-Database Architecture for Computer Games

sequence of actions, or decisions, that could be made in the software. You would
have to traverse every path, from the root to a leaf, in the tree of possible sequences.
The root would be when the software was started. Each branch would be when a
decision was made about the next sequence of actions, mainly by a logic branch.
And each leaf would be when you reached a point where you had no option, but to
return to a previous stage, or node in the tree of possible sequences of actions or deci-
sions. The Event-Database Architecture may allow you to test every one of these
logic paths,47 depending on two choices you could make.

Firstly, you could choose a system for adding Events, to the Architecture, that
revolved around logic branches. So that each branch was performed by using a Primary
and a Secondary Event. As a result, each Event would represent a branch in the tree of
all the possible sequence of actions or decisions that could occur in the software.

Secondly, you could choose to comprehensively document the interconnection
between these Events, so that you could understand the whole tree. Nevertheless,
even if the documentation did not permit this, the Architecture would still allow
you to test every branch in the tree. Since each Event, in the Architecture, would
represent a branch in the tree, you could test each one separately.

Documenting all the interconnections between Events would be, of course, the
better of the two options. It would allow you to perform a more thorough and exhaus-
tive test. However, another alternative to producing these documents would be to use
the Game Database. There would be at least two ways in which the Database could
be used to track the interconnection of Events.

One way would be to use the Log Records of the Database Host. These could
be used to monitor the Records of Primary Events. This would keep a log of all
the changes to the properties of Primary Events. So, assuming that each time a
Primary Event was used, its properties were changed, a log would be kept. And so,
you could use these logs to trace the chain of Events that occurred during a game.

But this would require every software module, in the Architecture, to modify the
Record of a Primary Event before using that Event. As it happens, the software com-
ponents of the Event-Database Architecture would do just that. The Physics Host,
the Sounds Host and the Game Controllers Host would all modify the Record of a
Primary Event, before sending that Event. And the list of Secondary Events these three
added, to the properties of the Primary Event, would be those that were about to be used.

However, there would be no requirement for the Game Objects to do this as well.
Unless, that is, a new rule were added to the system of generating Game Objects. To
compliment the system of generating Events. This rule would be that every Game
Object should get the Secondary Events that it would send, from specifed Records
in the Game Database. And it should only add these Events, to the properties of a
Primary Event, when it wanted to send that Primary Event. After it had fnished
using that Primary Event, the Game Object should remove all the Secondary
Events that it added.

The advantage of using the Log Records of the Database Host, to fnd the chain
of Events used for a game, would be that the method would be automated. By sim-
ply playing through a game, you could collate its chain of Events. The disadvantage
would be that how much of the overall chain was revealed would be limited. It would
be limited to the areas of the game you played through.

155 The Software Production Process

Another way of getting this chain would be to add two more properties, to the
Record of each Primary Event. The frst would be a list of all the Game Objects
which send that Primary Event. The second would be a list of all the possible
Secondary Events, which were going to be sent in response to that Primary Event,
during a game.

Using these two new properties, along with those of Primary and Secondary
Events already in the Game Database, you could trace the lineage of every
Event. For every Secondary Event, you would be able to see which Primary
Events used it, from the Database. For every Primary Event, you would be able
to see the set of Game Objects which sent it. And for each Game Object, you
would be able to see the set of Secondary Events it would receive. This last infor-
mation would come from the Secondary Events Record (see Section 3.1). So, for
any Event in the middle or end of the game, you would be able to trace back the
chain of Events from the Primary Initial Reset Event, which started the entire
game to that Event. You would be able to collate all the sets of Primary Events,
Secondary Events and Game Objects involved in the chain.

This method would have the same advantage as using the Log Records of the
Database Host. Namely, it would allow you to automatically collate the chain of
Events used in a game. It would have the added advantage in that it would not be
limited, to which areas of the game you have played through. It would collate the
chain of Events in all areas of the game.

For the debug version of this game, another advantage of this method would be
that it could help prevent errors. Each Primary Event would have a list of the Game
Objects that would send it. So you could stop the misuse of a Primary Event, by
Game Objects which were not on that list. Each Event would also have a list of
Secondary Events that were going to be associated with it. So you could ignore any
Secondary Event, associated with a Primary Event, which was not on that list.

The disadvantage of this method, however, would be its accuracy. The chain of
Events, which it would construct for a game, would actually be a set of possible chain
of Events, from the Primary Initial Reset Event to any other target Event. But only
a subset of this will actually be used in the game. So you would have to try out the dif-
ferent possibilities and eliminate the ones which did not lead to that other target Event.

At each point along the chain of Events, from the start of the game, there would
either be a set of Game Objects, a set of Primary Events or a set of Secondary
Events. Each member of a set of Primary Events may produce one or more of the
next set of Secondary Events in the chain. And one or more of the Secondary
Events, within a set, may be received by one member, of the next set of Game
Objects, in the chain. It would be possible to tell which Game Object responded
to any given Secondary Event. But it would not be possible to tell which Primary
Events were subsequently produced, by that Game Object.

So to fnd the exact path, from the start of the game, to any other Event you
were interested in, you may have to experiment. For any given set of Secondary
Events, you may have to experiment with the members of that set. It may take sev-
eral attempts to fnd the Secondary Events which produced one of the next set of
Primary Events, in the chain of Events. A Game Object may either only produce a
Primary Event after a Secondary Event has been received several times. Or it may

156 Event-Database Architecture for Computer Games

only produce a Primary Event when some previous Event had occurred several
times. Or it may only produce a Primary Event when some combination of previous
Events had occurred.

Therefore, beginning with the Primary Initial Reset Event, you would have to
experiment with all of the frst set of Secondary Events. You would have to select
the ones which, when received by its Game Object, produced one of the next set of
Primary Events in the chain. And you would eliminate those Secondary Events,
from the frst set, which did not produce any of the expected Primary Events.

Similarly, for each Event, in the frst set of Primary Events, you would have to
experiment again. You would have to select its Secondary Events which produced
one of the next set of Primary Events, in the chain. But this time, if none of its
Secondary Events did this, that Primary Event would have to be eliminated from
its set. You would repeat this process for all the subsequent sets of Primary Events,
along the chain of Events.

If after eliminating a Primary Event or Secondary Event from its set, that set
were to become empty, this would mean that you had reached a dead end. This would
be either because one of the previous Secondary Events along the chain had to be
repeated several times. Or this would be because some combination of these previ-
ous Events had to occur.

So you would have to repeat the entire search through the possible chain of Events,
from the start of the game. But, this time, you would either have to increase the rep-
etition of some Secondary Events. Or you may have to try some of the Secondary
Events in a different order. Hopefully, the description of the Records of the Primary
Events and Secondary Events, in the data design, should help you pinpoint exactly
which Events had to be repeated, or the order of Events required, to unlock the next
level down in the chain of Events.

The search would stop once you reached the end of the chain of Events. At which
point all the possible paths, from the start of the game to end of the chain, would
be any combination of the remaining Primary and Secondary Events in the sets,
along the chain.

The entire search for these paths may be partially, or completely, automated
by using a tool. This tool could be specifcally built to help with the testing
of a game, at the end of a software production life cycle. One, or more Game
Objects, could be added to the Event-Database Architecture, to build this tool.
And it would be possible, for a player, to access this tool at any stage of the
game. So that either the player could use the tool manually, to test the effect
of any Primary or Secondary Event, at that stage. And thus the player could
fnd a path, from the start of the game, to any other Event. Or the player could
manually describe to the tool, the sets of Primary Events, Secondary Events
and Game Objects, from the start of the game, to any given Event. And the tool
would systematically search through all the possible chain of Events and select
all the feasible ones.

The time it would take to fnd the feasible paths would depend on how the Game
Objects were built. It would depend on the average number of Secondary Events
each Game Object would receive. And it would depend on the average number
of Primary Events each Game Object would generate. The higher these numbers

157 The Software Production Process

were, the longer time it would take to fnd which Secondary Events produced which
Primary Events. The lower these numbers were, the less time it would take to get
this information. And ultimately, for optimum time, it would take to perform this
search, each Game Object should receive only one Secondary Event and send only
one Primary Event.

4.3.4 APPLICATION: GAME PLAY – ESCAPING A PRISON

Compare how the three systems for generating Events mentioned in the subchapter
entitled Rules for Generating the System of Events would be used in a production
process, based on the Event-Database Architecture, with the Software Evolution
Process.

For example, suppose there were one stage of a game in which the player would be
imprisoned, and held for ransom, in a cabin, on board a pirate’s ship. But in that cabin
there would be three open chests, each full of treasure taken by the pirates. And, in
order to escape, the player had to throw all of this treasure overboard, through a port
hole left open in the cabin. The contents of each chest would be so full that it would
take several attempts to empty it all. After emptying all of the chests, and leaving
two of these open, the player had to climb into the remaining chest and close it. So
that when the captors entered the cabin, they would panic, believe the player had
escaped and start frantically searching the ship, leaving the door of the cabin open.
Thus, they would present the player with an opportunity to escape.

Now in the Software Evolution Process, this stage of the game would be built
over several steps and evolve each time. The frst step would be to add the cabin to
the Game World and display it. This would include the background scenery around
the cabin, such as the rest of the ship, the sky and the sea. The second step would be
to place the three chests into the cabin. The third would be to introduce the player’s
character. This would include the commands that would move this character around
the cabin. And this would include other features such as the animations and sounds,
which would be seen and heard when the player walked around.

The fourth step would be to add the commands that would open and close the
chest, along with the animation and sounds for these actions. The ffth would be
to add the different quantities (i.e. images) of the treasure in each chest, from an
amount flling up half of the chest to an amount that was virtually overfowing. The
sixth step would be to add the command that would partially throw out the con-
tents of each chest. The seventh would be to add the commands that would allow
the player to climb in and out of each chest. Finally, at the end, the animations and
sounds that would be played back, when the captors entered the cabin, would be
added and displayed in the Game World.

But, as would be typical of the Software Evolution Process, each of these eight
steps would be conducted in an ad hoc fashion. And there would be little or no regard
for the next, causing at least three immediate problems.

The frst of these problems that would arise would relate to the tools of the
Software Evolution Process.

Take, for example, the progression from the frst to the second of the eight steps
just mentioned. After the cabin and its surrounding scenery had been built by the

158 Event-Database Architecture for Computer Games

Game Artists and displayed in the Game World, the three chests would be added
with little regard for the relative scale of these to the cabin. In the worst case, one
of the Game Programmers would be expected to adjust the size of the chests, by
editing the software and rebuilding it. This may take several attempts before the
Game Artists, the Game Designers, the Game Producer and anyone else with artistic
leanings would be satisfed. In the best case, one of the Game Programmers would
be asked to write a new tool. But only after the second step had begun, and it had
become self-evident what a waste of time it had been for the Programmers to have to
keep editing the software. This new tool would permit the Game Artists, or anyone
else, to set the relative scales of items displayed in the Game World and preview
these side by side.

Nevertheless, even in this case, the Programmer who wrote the tool would typi-
cally also be the one who would write the game module, which used the data pro-
duced by the tool. And this data would not be documented. So only that Programmer
would understand the tool, the data and that game module. In other cases, you may
get the marginally better situation where two Programmers would share this knowl-
edge. Namely, one Programmer would write the tool and another would write the
game module.

But, in almost all cases, there would still be no documentation of the tool, or
the game module. And the other Programmers, Game Artists or Game Designers
would be expected to familiarise themselves with either of the two Programmers.
Or with the tool by playing around with it, specifcally its User Interface. Through
this casual acquaintance, they would be expected to speculate about the design of
the tool, the data or the game module. Thus, the User Interface of the tool in effect
would become a form of de facto documentation. The various esoteric names, given
to the components of this Interface, would literally become components of the lan-
guage used, by the staff, to communicate. This would contribute to the degeneration
of that language, and the overall language of the staff as a whole. And the more this
language degenerated, the less productive the Game Programmers, Game Artists,
Game Designers and others would become.

The second problem that would immediately arise, from the ad hoc fashion in
which the Software Evolution Process progresses, would be refected in how the
fow of the game developed. The process would affect this development in four ways.

Firstly, it would turn the fow of the game from an abstract concept, into a physi-
cal one. That is, the fow of any game should be an abstract concept. It should be
an intangible high-level component composed of other, more simpler and tangible,
low-level ones. And intuitively, you would expect it to be controlled by a high-level
software module, which was composed of other low-level ones. Yet counterintui-
tively, in the Software Evolution Process, the fow of the game would end up being
controlled by the low-level software modules: not the high-level ones. That is to
say, it would be controlled by modules which had a physical component: either vis-
ible, audible or tactile in the game. Since, in the Software Evolution Process, these
modules would be the frst ones built by the staff. So that the Game Designers and
Producers could have some feedback from the software as quickly as possible.
And they could start flling in the huge gaps in the incomplete game design the
process would begin with.

159 The Software Production Process

These physical components, however, would become the basis for all subsequent
additions, including the fow of the game.

This leads onto the second effect that the Software Evolution Process would
have on this fow. That is, the fow of the game would not be directed by one, or
a small set of high-level modules, with no physical component. Instead, the fow
would end up being spread around a large set of low-level modules, controlling
items in the Game World. Thus making the process of editing the fow, far more
complex than it needs to be, due to the larger number of low-level modules it
depends on. Thus also making editing far more risky than it needs to be. Since
editing one of these modules could produce unwanted side effects on either the
fow of the game or the physical appearance of the Game World.

The third effect on the fow would be that the set of low-level modules direct-
ing it would be arbitrary. These modules would be the frst set which happened
to be written to demonstrate the Game World. And the fow of the game in all
the higher-level modules written after them would end up revolving around this
arbitrary set. The internal fow of the game, within these low-level modules,
would end up dictating the external fow of the game around them, in the higher-
level modules. The structure of the internal data, within these low-level modules,
would end up dictating the external structure of data for subsequent higher-level
modules written after them. And without these low-level modules the fow of the
entire game would grind to a halt.

The fnal effect of the Software Evolution Process, on the fow of the game, would
be that these preliminary modules, which are low-level modules, would not be docu-
mented. Thus, as has already been mentioned, the authors of subsequent higher-level
modules would waste time duplicating the testing for each branch in the fow of the
game, within this frst set. Since they would be ignorant of which and how many
branches were already detected by these low-level modules or other higher-level
modules.

Take the earlier example based on pirates. It would be counterintuitive to expect
either the sky, the sea, the pirate’s ship, their prisoner, the cabin or one of chests in
it, to control when that stage of the game began. Nor would one of these items be
expected to control how long the stage would last, how much time the player had to
complete it, before moving on to the next. Nor would these be expected to control
when the prisoner had completed the frst phase of the escape and emptied all the
chests. So that the second phase could begin and captors could come in.

But this would be exactly what would happen in the Software Evolution Process!
One or more of the modules (or Game Objects), which controlled the appearance of
these items, would be edited to control the fow of the game: from one phase to the
next: from one stage to the next. That is to say, you will fnd either the Game Object
of the sky, the Game Object of the sea, the Game Object of the ship, the Game
Object of the prisoner, the Game Object of the cabin or the Game Object of the
treasure chests controlled the fow of the game in this phase. Precisely which one
controlled this phase of the fow would be arbitrary, dependent on the order in which
these modules were built during the process.

The third problem that would immediately arise from the ad hoc fashion in which
this stage of the game would be built, in the Software Evolution Process, would

160 Event-Database Architecture for Computer Games

be evident in how the software procedures were written. These too would be con-
structed with little regard for the successive steps of the production process.

For example, one way in which the player’s escape, from the cabin, would be
monitored would be through a single software procedure. This procedure would
be used either periodically, after the stage had begun, or each time the player had
closed one of the chests. So that the procedure would then inspect the Game data. It
would check whether the player was in the chest, whether the other two chests were
open and whether all three were empty. But the use of a single procedure for this
purpose would prove problematic later on. For as the game design changed, the cri-
teria defning a successful escape would become more complicated. And this same
single procedure would be edited again and again. It would keep growing larger and
larger, becoming more and more complex and unmanageable in the process, with
each change in the criteria for a successful escape.

In contrast, with the Event-Database Architecture, these three problems
would be mitigated. Each step of the production process would be directed by the
Architecture.

Firstly, the data produced by any tool, and subsequently used by a Game Object,
would be documented in the data design. This would include any new tool, written
for the Game Artists, to allow them to change the scale of the cabin or the chests, and
preview the results. If indeed such a tool were necessary, in this example. Since the
open data format, of the Game Database, would mean you could use any Database
software to edit such information. With the Event-Database Architecture, you can
use tools, simpler than programming tools, to query and edit the Game Database.
Without having to wait for programming tools to build the game (which in the case
of modern commercial game-engines can take between 18 minutes to 14 hours for
a game with 300 staff). And then examine the results to see whether these were
what you expected. And then edit the Game Database again. And then build the
game again. And then examine the results again, and so on and so on. Instead, you
could build a more simpler tool Not necessary because of preceding amendment.
You could build one that would merely preview any changes which had been made,
by reading the relevant Records from the Database.

Secondly, in the Architecture, the beginning, middle and end of the fow of the
game would be controlled by one simple component. This component would always
be the same, and it would be an abstract, high-level component. It would have no
physical component in the game. This component would not be arbitrary and it would
be the same in every game based on the Architecture. This component would also
save time searching through software modules for previous tests for branches in the
fow of the game which you want to reuse in a new software module, and eliminate
the duplication of such tests. This component would be the Game Database of the
Architecture.

Thirdly, under the frst system for adding Events, to the Architecture, you would
never use a single software procedure for monitoring the player’s escape, as you
would in the Software Evolution Process. Instead, you would have multiple proce-
dures or Actions, each responding to the transition of data during the previous step
of the escape. And each would send one unique Primary Event when the transition
for the next step had occurred.

161 The Software Production Process

That is, excluding the standard Events and Actions required by the Architecture,
this example would require fve additional Primary Events, with four subsequent
Secondary Events. And each of these would require four corresponding Actions
(i.e. software procedures) to respond to these Events.

You would require one Action that would respond to the contents of a chest being
partially thrown out, by the player. And this would send an Event when that chest had
been completely emptied, as well as increasing the total that had been emptied. You
would require another one, which would respond to a chest being completely emptied,
or one of the chests being closed. And this would send an Event when all three chests
had been emptied. You would require another one that would respond to all three
chests being emptied and send an Event when it detected the player was inside one of
the chests. Finally, you would require another Action that would respond to the player
climbing into and closing an empty chest, after all three had been emptied. And this
would also bring the captors rushing into the cabin to begin their search.

In other words, you would require one additional Primary Event, which would
be sent by the standard Action, required to respond to the command that partially
emptied the contents of a chest. This, in turn, would require a subsequent Secondary
Event with a corresponding Action, which would respond after the contents had
been partially emptied. This Action would send another additional Primary Event,
but only when that chest had been completely emptied. And it would increase the
total that had been emptied, prior to sending this Event.

Likewise, this second Primary Event would require a subsequent Secondary
Event and Action, which would respond to one of the chests being completely emp-
tied. This Action would send a third additional Primary Event, but only when all
three chests had been emptied.

This third Primary Event would also require a subsequent Secondary Event and
Action, which would respond after all three chests had been emptied. This Action
would, in turn, send a fourth additional Primary Event, but only when it detected
the player had climbed inside one of the chests.

This would be the fnal Primary Event before the player completed initial phase
of the escape. Like the others, it would require a subsequent Secondary Event and
Action, which would respond after the player had climbed into one of the chests.
Although this would be the fnal one, before the completion of the escape, it would
not be the fnal additional Primary Event required to build this stage of the game.

Clearly, the chain of Events, following on from the command to empty one of the
chests, should not lead to a successful escape. For a successful escape, the player would
have to climb into one of the chests, after emptying all three, and close the lid. So the
chain of Events leading to a successful escape should follow on from the command
to close the chest. And, hence, a ffth additional Primary Event would be required.

This Event would be sent by the standard Action, required to respond to the com-
mand that closed one of the chests. And the aforementioned Secondary Event, which
would be sent after the player had emptied one of the chests, would also follow on from
this same Primary Event. This would result in a chain of Events which would begin
with the player closing the chest, followed by a check of whether all three chests had
been emptied, followed by another check of whether the player had climbed into one of
the chests and ending with the fnal Primary and Secondary Events being sent.

162 Event-Database Architecture for Computer Games

There is an example of the Primary Events, Secondary Events and Actions
required to implement this phase of the game in Figures 4.13 and 4.14.

The last of these Events would signal that it was time for the fnal phase of the
escape. That is to say, it was time for the captors to enter, fnd the cabin empty and
start a frantic search, leaving the doors open for the player to escape. Of course, this
phase could simply be played out, by the last Action, through some pre-recorded
computer animation. Alternatively, thanks to the Event-Database Architecture, it
could just as easily be played out interactively; by following the same principle used
to build the initial phase of the escape.

That is to say, you could have the Action which responded to the chest being
closed, sending an Event when the captors had entered, after a brief interval had
passed. You could add another Action which responded to the captors entering

FIGURE 4.13 An example of Primary Events, Secondary Events and Actions that could
be generated using a simple rule or system. That in turn could be used to build one quest of
a game. This quest being trying to escape from captivity in a cabin, with three chests full of
treasure, on board a pirate’s ship.

163 The Software Production Process

FIGURE 4.14 Legend of symbols displayed in Figure 4.13. It is a list of the symbols, for
the components of the Event-Database Architecture, that could be used to build one stage of
a game.

the cabin and sending an Event when they had left. You could add another Action
which responded to their departure and sending an Event, when the player had
stepped back out into the cabin and walked up to the open door. And fnally,
you could add another Action which responded to the player stepping out of the
cabin, through that door.

Or in other words, the last Action which responded to the chest being closed,
by the player, could send an additional Primary Event, with a subsequent delayed
Secondary Event, for the captors to enter the cabin. After a brief interval had
passed, you could add another Action, which responded to this delayed Event, and
played back the animation of the captors rushing in. At the end of that animation, the
standard Primary End Event should be sent.

Remember that if, for example, the Graphics Host were responsible for play-
ing back an animation sequence, then it would behave in a similar fashion to
the Sounds Host. That is, once it had fnished playing back any pre-recorded
sequence, it would notify any Game Objects that may want to follow on from that
sequence. It would append the Secondary End Event, assigned to that sequence,
onto the list of those following the Primary End Event. And it would then send
that Event.

So another additional Secondary Event could be included, amongst the proper-
ties of the animation, of the captors rushing in. This would act as its Secondary
End Event. This would require a corresponding Action, which would respond to
the captors leaving the cabin. And this penultimate Action would decide what would
happen once the player had reached the open door.

It would require another additional Secondary Event, which would be received,
by one of the Game Objects, when the player reached the door. And it would either

164 Event-Database Architecture for Computer Games

require that whatever Action existed, for responding to the Secondary Proximity
Event of the door, send an additional Primary Event. So that it could append its
Secondary Event onto the list of those following that Event. Or, if no such Secondary
Proximity Event existed, then it would merely require that its Secondary Event be
used instead. This Secondary Event would, in turn, require the fnal Action, which
would respond to the player reaching the door and escaping from the cabin. So in
total, including the initial phase of the escape, you would require six or seven addi-
tional Primary Events, with seven or eight Secondary Events and corresponding
Actions.

In Figures 4.15, 4.16 and 4.17, there is an example of how you would implement
this phase of the game, without using computer animation to automate the second

FIGURE 4.15 An example of Primary Events, Secondary Events and Actions that could
be generated using a simple rule or system. That in turn could be used to build one quest of
a game. This quest being trying to escape from captivity in a cabin, with three chests full of
treasure, on board a pirate’s ship.

165 The Software Production Process

FIGURE 4.16 Extension of Figure 4.15.

part of the escape. And instead require the player to manually complete the second
part of the escape (Figure 4.17).

All of these Events and Actions would leave room for interesting twists that could
be made to the game design by the Game Designers, or others, later on. For example,
it could be decided that the player may be unlucky. And that sometimes, when the
chests were being emptied, the captors would notice the cargo being offoaded and
become alarmed. They would then barge into the cabin, proceed to manhandle the
player’s character and knock that character out.

This change could be partially achieved by simply editing one of the Game
Objects, and adding a new Action. This Action would respond to the existing Events
sent after the contents, of one of the chests, had been partially emptied. It would do
little, except just occasionally send another existing Event. Namely, it would send
the Event for when the player had entered, and closed one of the empty chests, hav-
ing completed the initial phase of the escape.

166 Event-Database Architecture for Computer Games

FIGURE 4.17 Legend of symbols displayed in Figure 4.15. It is a list of the symbols, for
the components of the Event-Database Architecture, that could be used to build one stage of
a game.

In other words, you could add a new Action, to one of the Game Objects,
which would respond to one of the existing Primary Events. Specifcally, it
would respond to the one sent by the standard Action, which performed the
command that partially emptied each chest. This new Action would require a
new Secondary Event, which it would respond to, that would be added onto
the list of those following on from that Primary Event. And it would require
a new Primary Event, which it could send, that would have just one existing
Secondary Event. Namely, the one that would normally only be sent when the
player had completed the initial phase of the escape. So that, in response to
the new Secondary Event, this new Action would occasionally send the new
Primary Event.

The effect of this change would be that, whenever the player threw out the con-
tents of a chest, the captors would occasionally enter the cabin. And they would act
as if the player had escaped. Except this time, it would only be part of their treasure
which had escaped.

167 The Software Production Process

Of course, they would subsequently walk out and leave the door open, just as if
the player had escaped. So to fnish off the effect, new animation would be required,
which would follow on from the existing animation. And an additional Secondary
Event would also be required. This would be sent after the existing animation, of
the captors entering the cabin, had fnished. And it would be appended onto the
list of those following the Primary End Event, which should mark the end of that
animation. The existing Action, which played back that animation, could be edited
for this very purpose. Furthermore, an additional Action would be required that
would respond to this new Secondary Event. And it would play back new anima-
tion, of the captors reentering the cabin, proceeding to manhandle the player and
knocking the character out. Thus in total, including the initial and fnal phases of the
escape, you would require seven or eight additional Primary Events, with nine or
ten Secondary Events and corresponding Actions.

Under the second system for adding Events, to the Event-Database Architecture,
you would require less Actions than the frst, to build such an example. You would
merely require eight Actions. And each one would respond to a unique pair of
Primary and Secondary Events.

You would require one procedure, or Action, for responding to the Events
sent after each chest had been partially emptied. You would require another,
to respond to the Events sent when the captors had noticed the cargo being
offoaded by the player. And you would require another, to respond to the Events
sent after the captors had left and then returned into the cabin, to manhandle the
player. You would require one Action, for responding to the Events sent after
the player had entered one of the chests. And you would require yet another, to
respond to the Events sent after the player had climbed back out of one. You
would require one Action, to respond to the Events sent after one of the chests
had been closed. And you would require another, for responding to the Events
sent when the initial phase of the escape had been completed. Finally, you would
require one Action, to respond to the Events sent when the fnal phase had been
completed.

In other words, under the second system, every Action performed in response to
one of the standard Events, required by the Architecture, would also be required
to send two unique Primary Events. Since every Action, would be required to send
one Primary Event when it began, and another when it ended.

So excluding the standard Events and Actions, to build this stage of the game,
you would require one additional Secondary Event. This Event would follow on
from the additional Primary Event, sent at the end of one of the standard Actions.
Namely, the one that responded to the command for partially emptying a chest. And
this Secondary Event would require a corresponding Action, which would count
how many chests had been completely emptied.

You would require another additional Secondary Event, which would follow on
from the same Primary Event as the frst one. And it too would require a cor-
responding Action. This Action would decide whether the player had only par-
tially emptied the contents of a chest. And it would occasionally alert the captors
to the cargo being thrown overboard, if that turned out to be the case. At which
point, it would play back the animation of the captors entering the cabin to begin a

168 Event-Database Architecture for Computer Games

frantic search. As under the frst system, a Primary End Event would be sent at the
end of this animation.

So a third additional Secondary Event would be required to act as the Secondary
End Event for the animation. This Event would require a corresponding Action.
This Action would, once the captors had left the cabin to begin their search, play
back the animation of the captors reentering to manhandle the player.

You would require a fourth additional Secondary Event, which would follow on
from another additional Primary Event. This Secondary Event would, eventually,
follow on from the Primary Event, sent at the end of one of the standard Actions.
Namely, the one performed in response to the command for climbing into a chest.
And this Secondary Event would require a corresponding Action, which would
prepare the command for closing the chest, to begin the fnal phase of the escape.

But, initially, that Secondary Event would not be on the list of those following on
from the command for climbing into a chest. Until, that is, all three chests had been
emptied. At which point, the aforementioned Action, which followed on from the
command that emptied the last chest, would add that Event onto the list.

You would require a ffth additional Secondary Event, which would follow on
from another additional Primary Event. This one would follow on from the Primary
Event sent at the end of another standard Action. Namely, the one performed in
response to the command for climbing back out of a chest. And this Secondary
Event would require a corresponding Action, which would stop the closing of the
chest beginning the fnal phase of the escape.

This would be done by removing a sixth additional Secondary Event, which
would be required, from the list of those following on from yet another additional
Primary Event. This sixth one would, eventually, follow on from the Primary
Event sent at the end of another standard Action. That is, the one performed in
response to the command for closing a chest. And this Secondary Event, in turn,
would require a corresponding Action, which would respond to the end of the initial
phase of the escape. This Action would also begin the fnal phase, by playing back
the animation of the captors, entering the cabin to begin a frantic search, after the
player had hidden in one of the chests.

But, initially, this Secondary Event would not be on the list of those following
on from the command for closing a chest. This would only happen after the player
had emptied all three and climbed into one of the chests. At which point, the afore-
mentioned Action, which followed on from the standard Action of the command for
climbing into that chest, would add that Event onto the list.

At the beginning of the fnal phase, the same animation would be played back as
when the player’s attempt to escape had failed. And a Primary End Event would
be sent at the end of that animation. But a different Secondary End Event would be
required, since the player would have succeeded this time. Thus, a seventh additional
Secondary Event would be required. This Event would require a corresponding
Action, which would respond to the captors leaving the cabin and the door open, for
the player to complete the escape.

This penultimate Action would require an eighth additional Secondary Event.
This would be the fnal Event, just as under the frst system. And it would only be
sent when the player had reached the open door and completed the escape. However,

169 The Software Production Process

in order for this to happen, that Event would either be required to follow on from any
existing Secondary Proximity Event assigned to that door. In which case, whatever
Action responded to that Proximity Event would be required to send an additional
Primary Event at the end of it. So that the fnal Event could follow on from that
Primary Event. But that should happen anyway according the principles of the sec-
ond system.

Or this fnal Secondary Event could be that Secondary Proximity Event. Either
way, you would require a fnal Action that would respond to this Event. And that
Action would defne what would happen once the player had completed the escape.
So in total, you would require eight additional Primary Events, nine Secondary
Events and ten Actions.

There is an example of how to implement this phase of the game using the sec-
ond system for generating new Events in the Event-Database Architecture in
Figures 4.18, 4.19 and 4.20. Notice how the Actions complement each other in pairs.

FIGURE 4.18 The same fow diagram as in Figures 4.15 and 4.16. Except there are seven
new nodes or Actions. These allow for the captors to occasionally come in and disrupt the
frst or hiding phase of escape and manhandle the prisoner. As well as allowing the prisoner
to exit the chest, after hiding in it, and abort the frst or second phases.

170 Event-Database Architecture for Computer Games

FIGURE 4.19 Extension of Figure 4.18.

The Start Hiding Phase Action is complemented by the End Hiding Phase Action.
The Start Emptying Three Chests Action is complemented by the End Emptying
Three Chests Action. The Start Animating Alert Captors Action is comple-
mented by the End Animating Captors Action. The Start Running Phase Action
is complemented by the End Running Phase Action. And the Abort Hiding Phase
Action is complemented by the Abort Running Phase Action.

The contents of the Game Database would be more or less the same, under the
second system, as under the frst. That is, in so far as each Action would use the same
Records, to display the same number of Game Objects in the Game World, count
the number of chests that had been emptied and play back the same animations and
sounds, as before. The difference would be that the number of Primary Events sent
from within each Action would be greater. Although, in this particular instance,
only eight of the additional Primary Events were used, to build this stage of the
game, there would in fact be a lot more. In this example, there are 12 additional or
Custom Actions, and each of them sends Primary Events at the beginning and end.
So, in total, there are 24 Primary Events available. Of these, only eight are being

FIGURE 4.20 Legend of symbols displayed in Figures 4.18 and 4.19. It is a list of the sym-
bols, for the components of the Event-Database Architecture, that could be used to build one
stage of a game.

used, and those are the ones you see in Figures 4.18 and 4.19. But there are another
16 which are not shown and may never be used (Figure 4.20).

This difference between the frst and second systems for generating Events would
also be refected in the contents of each Action. Under the second system, each
Action would send a Primary Event when it began and ended, instead of when it
found out that some signifcant transition in the data had occurred. These two Events
would be sent regardless of the changes that had occurred in the Game Database,
during that Action. A Game Object could no longer respond to, for example, an
Event sent when a chest had been completely emptied, as supposed to being partially
emptied. Nor could a Game Object respond to an Event sent when the player had
entered and closed one of the chests, after having emptied all three. So each Action
would simply have to modify the Database itself, whenever it noticed any signifcant
changes had occurred.

For example, the Action which responded to the contents of a chest being par-
tially emptied would be responsible for noticing when the chest had been completely
emptied. And it would subsequently increase the total number that had been emp-
tied. Once all three had been emptied, that same Action would change the fow of

171 The Software Production Process

172 Event-Database Architecture for Computer Games

the game. Before, the player climbing into one of the chests would have had no effect.
Neither would the player subsequently closing that chest had any effect. But, after
all three chests had been emptied, the fow of the game would be changed by the
same Action. So that the player climbing into the chest would, in turn, lead to a new
Action. That new Action would in turn produce another change in the fow of the
game. So that closing the chest would in turn lead to a new Action. That would play
the animation of the captors entering the cabin.

Naturally, the opposite Action, which responded to the player climbing back out
of the chest, would have to reverse this change. It would have to stop the automatic
appearance of the captors once the lid was subsequently closed, if it detected that
this would happen at the end of it. Instead, it would have to change the fow of the
game back. So that closing any of the chests would not have any effect. This should
not bring in the captors, since the player would not have completed the escape whilst
standing back out in the cabin.

Under the frst system for adding Events to the Architecture, a transition in the
data held by the Game Database would cause a Primary Event to be sent. But
under the second system, such a change would only cause a change in the chain of
Events, which controlled the fow of the game.

In other words, under the frst system, excluding the standard Primary Events,
there would be no change in the Records describing the relationship between
Primary Events and Secondary Events, from the beginning to the end of a game.
But under the second system, there would always be a change in these Records,
whenever there was any signifcant change in the Database.

Another major difference between the two would be that you could easily extend
the beginning or ending of each Action, performed in response to an Event, under
the second system. Suppose the game design were changed, so that a new sound
would be heard before a particular chest was opened, or just after it had been
opened. If that were to happen, the software could easily be edited to achieve this
effect. This could be achieved by simply editing one of the Game Objects, to
include a new Action, that would respond to the Primary Event sent before that
chest was about to be opened. This would require a new Secondary Event, which
would follow on from that Primary Event, which the Action would respond to.
And, in response, it would play back this new sound. Of course, the new sound
would have to be recorded and added to the Records of Game Database, along
with the new Event, frst.

Alternatively, suppose the game design were changed, so that the same chest could
not be opened, unless the player had found some key earlier, lying around in another
part of the Game World. This change too could easily be accommodated. One of
the Game Objects could be edited, to include a new Action that would respond
to the Primary Event sent after that chest had been opened. This would require a
new Secondary Event, which would follow on from that Primary Event, and this
Action would respond to. And, in response, it would simply check if the player’s
character were carrying the right key. It could do this by, for example, searching a
Record holding the list of items in the inventory of that character. And if it could not
fnd the right key, the new Action would immediately shut the lid. It could do this by
sending the same Primary and Secondary Events, which would otherwise be sent,
when the command for closing the chest had been used.

173 The Software Production Process

But there would be other, far less obvious, extensions you could make to the
Actions performed in response to an Event, under the second system. Suppose you
had a Action that would reset all the characters and other items involved in this stage,
before it was played. And this Action responded to a Primary Event sent when that
stage had begun. Each time it responded to this Event, it would use the same six
Actions. The frst of these would clear the list of Game Objects being displayed in the
Game World. The second would add the cabin and its background scenery onto this
list. The third would place the three chests inside the cabin. The fourth would place a
locked door over the entrance of the cabin. And the sixth would reset the animations
and sounds played back when the player moved, when the captors entered the cabin to
start searching for the player, and when they reentered prior to manhandling the player.

Now each of these six Actions would be required to send two different Primary
Events, when it began and ended, under the second system. So you could easily extend
each one if say, the game design were changed so that the cabin would include an old
clock, against one of its walls. And a table would be placed somewhere in the middle of
the cabin. Furthermore, instead of the player’s character beginning in one corner of the
cabin, in one pose, that character would begin in the opposite corner in a different pose.

To make these changes, three new Actions could be added to the Game Objects,
without editing any of the existing ones. And each one would require a new Secondary
Event, following on from an existing Primary Event, that it could respond to. The
frst new Action could respond to the Primary Event sent after the cabin had been
loaded in the Game World. And this could loaded the old clock inside it, against one of
the walls. The second Action could respond to the Primary Event sent after the chests
had been loaded inside the cabin. And this could search for an empty space into which
it could place the table. Finally, the third Action could respond to the Primary Event
sent after the player’s character had been loaded in the cabin. And this could move that
character, from one corner to the other, while changing the player’s initial pose. (Note
that the standard Architecture does not include a Primary Event for when items are
Loaded into the Game World. But the Architecture described in the second book in the
series, Event-Database Architecture for Computer Games: Game Design and Nature of
the Beast, does include an example that does include this Primary Event).

Unlike the second system, the third system would be similar to the frst system for
adding Events to the Architecture in one respect. That is to say, it would also require a
Primary Event to be sent only when some signifcant transition in the data had occurred.
Under the third system, if a software procedure included some logic branch that checked
for such a transition, it would have to send an Event when that transition had occurred.
But this system would be much broader in this respect than the frst. For that procedure
would also be required to send another unique Primary Event, when no such transition
had occurred. Furthermore, all logic branches, excluding those that were merely either
checking for errors, or searching for data, would have to send two or more Events. And
this would depend on whether some condition had been met or not.

So suppose, for example, you had to build this same stage of the game, where the player
was being held captive in a cabin, and had to fnd a means of escape. Instead of the set of
nine or ten Actions used to build that stage under the frst, and the eight or nine for the
second, under the third system you would require just six or seven.

You would require one Action that would respond to the Events sent when the player
had partially emptied the contents of a chest. You would require another that would

174 Event-Database Architecture for Computer Games

respond to the Events sent when the contents of a chest had been completely emptied.
You would require another that would respond to the Events sent when the captors had
to reenter the cabin and start manhandling the player. You would require another that
would respond to Events sent when the initial phase of the escape had been completed.
You would require another that would respond to the Events sent when the fnal phase
began. And, fnally, you would require one Action that would respond to the Event sent
when the player had completed the escape.

In other words, two of the standard Actions, which would be required to per-
form the player’s commands, would be required to include a logic branch. And these
would in turn provide the additional Primary Events, which a solution could be built
upon. These two Actions would namely be the one that would perform the emptying
of each chest, and the one that would close each chest. The former would be required
to send one additional Primary Event, when a chest had been completely emptied.
And it would be required to send another, when it had only been partially emptied.
The latter would be required to send one additional Primary Event, when the player
had closed a chest whilst standing outside the chest. And it would be required to send
another, when a chest had been closed after the player had climbed into one.

The frst additional Secondary Event would be required to follow on from the
Primary Event sent when a chest had been completely emptied. This Secondary
Event would also follow on from the Primary Event sent when the player had
climbed into a chest and closed the lid. This would require a corresponding Action,
which would count how many chests had been emptied. The Action would use one
logic branch, to send one of a trio of additional Primary Events, depending on
whether all three chests had been emptied. Either it would send one, when all three
chests had not been emptied. Or it would send another, when the Action had fol-
lowed on from the command for closing a chest. Or, it would send another, when the
Action had followed on from the command for emptying the chest.

To determine which command the Action was following on from, the Game
Objects were performing that Action, could look up the Events History Record
to determine preceding Primary Events. This would include the standard Primary
Events for each command.

Nevertheless, this would not matter for the last of this trio of Primary Events, sent
by the Action, in this example. Since this would have no subsequent Secondary Events,
nothing else would happen once the player had emptied all three chests. The frst one,
however, would be followed by an additional Secondary Event. This Event would also
follow on from the Primary Event sent after a chest had only been partially emptied by
the player’s command. This Secondary Event would require a corresponding Action,
which would occasionally alert the captors to the player’s escape. And it would play
back the animation of the captors rushing in to begin a frantic search.

This Action would behave in the same way as the one under the frst and second
systems. It would require a third additional Secondary Event that would act as the
Secondary End Event of the animation. This End Event, in turn, would require
another Action, which would play back the animation of the captors reentering to
manhandle the player.

As for the second of the trio of Primary Events, sent by the Action which would
detect when all three chests had been emptied, this would mark the completion of
the initial phase of the escape. Since this Event would follow on from a command

175 The Software Production Process

to close the chest, after the player had entered it. So this would require a fourth
additional Secondary Event and a corresponding Action, which would respond to
the end of this phase. This Action would play back the animation of the captors
briefy entering the cabin and then leaving to begin a frantic search. As such, it would
behave in very much the same manner, as the one under the frst and second systems.

Once the animation had been played, the Action would require a ffth additional
Secondary Event, which would act as a Secondary End Event of the animation.
This would require a corresponding penultimate Action that would determine when
the player had completed the escape from the cabin. This would be, that is, when
the player had reached the door. So either whatever Secondary Proximity Event
assigned to the door would be required to send an additional Primary Event. And
the Action would append its Secondary Event onto that Event. Or its Secondary
Event would be used as the Secondary Proximity Event. Either way, this Event
would require a corresponding fnal Action. And that Action would defne what-
ever rewards the player would receive, or subsequent stages of the game that would
be followed. Therefore, in total, six or seven Primary Events, with six or seven
subsequent Secondary Events and corresponding Actions would be required (see
Figures 4.21–4.23).

FIGURE 4.21 An example of Primary Events, Secondary Events and Actions that could
be generated using a simple rule or system. That in turn could be used to build one quest of
a game. This quest being trying to escape from captivity in a cabin, with three chests full of
treasure, on board a pirate’s ship.

176 Event-Database Architecture for Computer Games

FIGURE 4.22 Extension of Figure 4.21.

FIGURE 4.23 Legend of symbols displayed in Figure 4.21. It is a list of the symbols, for
the components of the Event-Database Architecture, that could be used to build one stage of
a game.

177 The Software Production Process

Under the third system for adding Events to the Architecture, every Primary
Event added would have at least one other complementary Event. For example, the
Events sent when the player had partially emptied the contents of a chest would have
complements, in the Events sent when the player had completely emptied that chest.
Similarly, the Events sent when the player had closed the lid, from inside a chest,
would have complements in the Events sent when the lid had been closed from the
outside. Likewise, the Events sent when the player had successfully completed the
initial phase of the escape would have complements too. These would include the
Events sent when that phase had failed and the captors had noticed the cargo being
offoaded. And these would also include Primary Event sent when the player had
just emptied all three chests.

During a production process which followed the Event-Database
Architecture, each set of complementary Events would be added together, to
the Game Database, at the same time. This would be because each set would
be used by the same Action. And, according to steps (7) and (17) of the Event-
Database Production Process, each should be added before that Action was
written. So anyone who came across each set, such as the Game Designers,
would also see the options that the complementary Events gave them, to modify
the game design.

For example, the last set of complementary Events, relating to the success or
failure of the initial phase of the escape, would present the Game Designers with
at least one obvious possibility. This being namely that the captors could enter the
cabin at any time, during the player’s escape, and foil the plan. They need not wait
to enter, once the player had climbed into one of the chests and closed the lid. The
Action that responded to the Events sent after the player had closed the lid, with one
of a trio of Primary Events, could be used at any time. And depending on whether
the player had successfully completed this phase, or not, it would send one of its
complementary Events.

So they need not predicate the entrance of the captors, on the commands
for emptying and closing a chest. Instead, they could simply have the captors
appear after a random interval, from the start of the stage, had passed. This
change could be easily achieved by stopping all the Secondary Events, which
would follow on from the Primary Events sent by the standard Actions of these
commands, from doing so. Instead, the Secondary Event that would have been
sent after the player had closed the chest could be added to the list of delayed
Events sent when the stage had begun. And the properties of this Secondary
Event could be edited to include a time delay, proportionate to the minimal
interval before the captors’ entrance. All of this could be done by editing the
Game Database.

Furthermore, the Action that would have responded to the Events sent when the
player had failed, to complete the initial phase of the escape, could be edited. So that
it would no longer occasionally alert the captors to the escape. Instead, if by the time
the delayed Event had occurred, the player had not completed the initial phase of the
escape, it would always alert the captors.

Now the escape from the cabin would become a tense affair. The captors could
return at any moment to foil the player’s plan. It could take several attempts, at this

178 Event-Database Architecture for Computer Games

stage, before the player would succeed. Alternatively, it may take a long time before
the captors enter the cabin, after the player had successfully completed the initial
phase of the escape. As a result, the player may become impatient and step out of
hiding too soon, only to be caught by the captors.

The tension could be heightened even further by adding a new sound, and
Secondary Event to the Game Database, along with a new Action to the Game
Objects. The new sound would be a recording of footsteps outside the door of the
cabin that would be heard prior to each entrance of the captors. The new Secondary
Event would be sent, after a suitably long interval from the start of the stage, but
just before the captors appeared. And the new Action would respond to this Event
by playing back the recording. So that the player would be given advance warning
every time the captors were about to enter.

As has been illustrated in this example, the tolerance for changes to a game
design would compensate for the greater number of software procedures (i.e.
Actions) that would be required. Be it under the frst, second or third systems for
adding Events, to the Architecture, that number could be up to ten times greater
than under the Software Evolution Process. But it would be a mistake to view the
Architecture only from this lower level, the level of the technical design; thereby
exaggerating this effect. A higher view, from the level of the game design, which
the Architecture was meant to serve, would provide a better or more accurate
perspective.

It would be easy to exaggerate, from a low-level view, the number of soft-
ware procedures required during the production of a game, by making false
assumptions. Namely, that the relationship between the number of procedures,
required under the Event-Database Architecture, to the number required under
the Software Evolution Process, would be linear. This would be the case at the
beginning of production. That is to say, the number of software procedures or
Actions generated at the beginning of the Event-Database Production Process
would be the same if not greater than the number of software procedures gener-
ated at the beginning of a Software Evolution Process. The rules for generating
Events in the Event-Database Production Process require you to generate lots
of redundant Events, and hence software procedures or Actions, to respond to
those Events.

But as time passed, and the number of Events, Actions and Game Objects grew
in the Architecture, the combinations of Events, Actions and Game Objects you
have available to build the game, just by editing the Game Database, would grow
exponentially. And only a subset of these combinations would be required to repli-
cate the same features of a game design that would otherwise be performed by all
of the procedures built under the Software Evolution Process. And towards the end
of production, the combinations available to meet hypothetical changes in the game
design would exceed all expectations. All of these changes could be accomplished
by the Game Designers or other staff, without the aid of the Game Programmers.
And the majority of these same changes could not be replicated without a major
overhaul of the software procedures, under a Software Evolution Process. For most
of these procedures would not have been documented. Those that were would only

179 The Software Production Process

be understood, at worst, by the Programmers who wrote each one, and at best, by
other Programmers.

Likewise, it would be easy to exaggerate the number of Events you would
require, for example, under the frst system for adding Events. This system would
not be as broad as you might think. During a production process, you would not
add Events based on every transition of data that occurred on the level of the
technical design. Instead, you would add one for every transition that occurred
on the level of the game design. An example of when you would send an Event
using this system would be when a player used a signifcant command. You would
also send an Event when the player came within close proximity of a special
Game Object, in the Game World. When the number of items being carried by a
character, crossed an upper or lower limit, would cause another Event under this
system. When some modifed property of a location, or an item lying in that loca-
tion, matched another, constant Field in the Game Database would also produce
an Event.

Nevertheless, the second and third systems, for adding Events, would be both
fawed. The second would ignore internal logic branches, which may occur within
a software procedure. The third would ignore the external branches, from one pro-
cedure to another. Both of these branches may be of interest when it came to chang-
ing the game design. A solution to both of these problems would be to combine the
second and third systems, to form a fourth system i.e.

4. two unique Primary Events should be sent at the start and the end of each
procedure, or Action and each option, chosen by a logic branch within that
procedure, should be performed by another procedure or Action.

This would provide you with the opportunity to not only easily extend both ends
of a software procedure, or Action, just by editing the Database. But you may like-
wise extend any options, chosen by the logic branches that occurred internally,
within it, as the changing of the game design dictated.

4.3.5 APPLICATION: GAME PLAY – PICKING A ROSE BUSH

Compare how the two systems for generating Game Objects mentioned in the
subchapter entitled Rules for Generating the System of Game Objects would be
used in a production process, based on the Event-Database Architecture, with the
Software Evolution Process.

For example, suppose one stage of a game was set in a courtyard of some medi-
eval castle. And in this courtyard was a garden, with one giant rose bush at the centre
of it. If the player stayed long enough in that garden, he or she could watch the roses
growing on the bush. Each rose would frst appear as a small bud, which would then
grow larger, open slightly, blossom and fnally die. But the player could pick a rose
once it had blossomed. And once picked the rose would permanently remain blos-
somed. However, if the rose died on the bush, the whole cycle would begin again,
with the appearance of a small bud.

180 Event-Database Architecture for Computer Games

In this example, a rose would have fve states. But the rest of the bush would only
have one state. So you would require one Game Object to build the roots, branches
and leaves of the bush. And you would require fve Game Objects to build each rose,
under the frst system for adding Objects to the Event-Database Architecture. One
Game Object would be required for each state. When the frst one appeared in the
Game World, it would send one unique Primary Event, followed by two subsequent
Secondary Events, delayed by a few minutes. In response to one of these delayed
Events, that Game Object would then disappear. And in response to the other
delayed Event, the next Game Object would appear in its place. When the second
one appeared, it too would wait a similar amount of time, before disappearing just
like the frst, and being replaced by the third Game Object, and so on. Finally, after
the last one had appeared, it would bring the frst one back up in the same fashion,
and the whole cycle would begin again.

The fourth Game Object of this cycle would represent a rose that had blossomed.
And it would require one unique Primary and Secondary Event to respond to,
when it was picked by a player. When this happened, the fower would disappear
from the bush, appear on the body of the player’s character and stop waiting to die.
That is to say, the Game Object would remove the Secondary Event it was due
to receive, when it was time for the rose to die, from the Record holding the list of
delayed Events.

Clearly, if the bush had several roses, and the state of each rose was independent
of the others, then you would require more Game Objects. You would require fve
Game Objects for each rose. And this would apply for any feature of a game you
wanted to implement. If the original single Game Object you wrote to implement
the feature had many elements, which had independent states, you would require
more Game Objects. You would frst have to write a single Game Object for each
element. And, after that, you would replace each of these with multiple new Game
Objects: one for each state.

With this system, every Game Object would represent one element of the
game, in one state. This element could be a character, a location or some other
item found in one of its stages. And you could predict how each Game Object
would behave in this state, in response to any Events. So anyone could combine
these Game Objects with other elements of a game, to produce the effect he or
she wanted.

Contrast this with how the same example would be built in a Software Evolution
Process. The rose bush would be evolved over several steps. The frst step would
involve displaying a static image of the roots, branches and leaves of the bush, in the
Game World. This may also include some static roses at different stages of growth.
The second step would involve demonstrating a single rose going through a single
cycle of growth; from a small bud, to a fully blossomed rose, and fnally ending
with its death. The third step would involve showing the rose repeating this cycle,
again and again, ad infnitum. The fourth step would involve several roses repeating
this same cycle, in unison, on the bush. The ffth step would have these same roses,
repeating this same cycle, but this time out of step with each other, and at different
phases. The fnal step would introduce the player’s character. And this would include

181 The Software Production Process

the commands for moving that character around, as well as picking a rose once it
had blossomed.

It all sounds reasonable, even desirable. Until you bear in mind that, as would be
typical of a Software Evolution Process, each step would be executed in an ad hoc
manner. And there would be no regard for any subsequent steps. One result of this
would be that there would be no system for deciding how many game modules would
be used to build the rose bush.

In the worst case, you may end up with only one module being used. As the
game design changed, that single module would end up becoming very complex.
No attempt would be made to simplify it, by breaking it down into smaller modules.
Instead, this single module would be allowed to grow larger and larger, as more and
more features were added to the rose bush.

This game module would display all of the roses and the rest of the bush. It would
contain all of the data, including those describing the position of the roses and the
rest of the bush. It would include the data describing the different Frames of anima-
tion, used to display each rose, during its growth. It would include the data describ-
ing the stage of growth of each rose. It would include data describing how much time
had passed since the rose bush appeared in the Game World. And the module would
include the software procedures used to read and react to the command, from the
player to pick up a rose, once it had blossomed. And, of course, none of these data
and procedures would be documented.

Along with its over complexity and its lack of documentation, the game mod-
ule used to build the rose bush would not be re-usable. In the worst case, it would
have been tailored only for this one particular game design. It could not be used
to subsequently display other plants, with other fowers going through different
stages of growth. Nor could it even be used to display the same rose bush, with
more roses.

In the best case, the rose bush would be built using two game modules. One would
be used to build a single rose, which would also be re-used to build all the roses.
And another would be used to build the roots, the branches and the leaves. And you
could edit the images or 3D models used to display the roots, branches, leaves and
roses to change their appearance, in a game-editor and re-use these to display other
plants going through different stages of growth. Although this would not suffer from
the same over complexity as the previous case, the difference would be marginal.
The number of fowers would be hardcoded. The number of states of these fowers
would be hardcoded. The command to pick a fower would be hardcoded. You could
not edit these items by simply editing a Game Database. You cannot edit these
while the game was being played. You cannot edit these and restart the game. You
cannot edit these without Programmers or programming tools rebuilding the Game
Database. You may be able to edit these and preview the effect in the game-editor.
But the game-editor is not the game. A preview is not a fnal product. A preview
of a flm is just marketing. Whereas before, in the worst case, you had one module
rapidly growing out of control, now you would have two modules, slowly growing
out of control. Although there may have been an initial attempt to simplify the soft-
ware, it would have only been discretionary. Subsequent attempts would forego such

182 Event-Database Architecture for Computer Games

niceties, when the game design was changed. And any additional features would be
crammed into the same two modules.

Furthermore, although there may be some documentation of the original two
game modules, this too would also have been discretionary. There would be no fur-
ther documentation of the modules, after the initial game design had changed, and
the software procedures and data changed along with it. So instead of having no
information, as in the worst case, you would have misleading information, in the best
case, when it came to editing the software.

Finally, although these two game modules may be re-used to, say, build other
plants in the Game World, you would eventually fnd this capability also to be mis-
leading. For either, in order to do this, you would be required to edit a third module
which had been neglected and as a result had grown out of control, become very
complex, had no documentation and its relationships with the two modules was also
not documented. Or you would fnd out that this third module was in fact part of the
game-engine. And so, by changing it, you would be putting other modules, which
depended on this game-engine, at risk. Or you may fnd access to the game-engine
denied, for this very reason, by the Programmers who wrote it or maintain it. And
so you would have to resort to fnding some crude, ad hoc solution to get around this
limitation.

However, with the Event-Database Architecture, there would be no such limi-
tations. At least with respect to the data, these would be documented in the data
design. And all of the software modules, including the software components of the
Architecture, such as the Events Host and Database Host, could be edited. So
long as these components kept to the minimum requirements described for each
one and followed the principles of the Architecture. Any of these could be edited if
that were required by the game design. This would be some of its advantages over a
game-engine.

Another would be that the game-engine, used in a Software Evolution Process,
would probably have been produced by another Software Evolution Process anyway.
Along with the other tools, used to give the process credibility at its onset, such
as the game-editors, the game-engine would be suffering from the same faw. All
of these tools would have been produced by another Software Evolution Process.
And as such these tools would not be as well documented, comprehensible and
accessible as a software architecture. Any discussion involving these tools would
invariably degenerate into an esoteric discussion about the idiosyncrasies of these
tools, because of the same degenerative language, because of this same faw inherent
within each product of a Software Evolution Process. And thus the discussion has to
be either left to the Programmers who wrote the tools. Or it has to be left to those
who could understand this degenerative language, that is to say other Programmers.

But, by following the Event-Database Architecture, the level of discussion,
during a software production process, about any aspect of a game, would always
remain high. It would not need to go any lower than Events, Actions, Game
Objects, Database Tables, Fields and Records. So hopefully everyone would
always be able to participate: not just the Game Programmers. This accessibility
would be evident under any system you chose for adding Game Objects to the
Architecture.

183 The Software Production Process

For example, under the second system, you would begin building a feature
for a game by deciding what formulas you were going to use. These would not
be formulas which revolved around mathematics, physics or some other simi-
lar science. Nor would these be formulas which revolved around programming
languages, which only the Game Programmers could understand. Instead, these
would be formulas which simply revolved around the Tables, Fields and Records
of a Game Database.

There would be two types of formulas. The frst type of formula would be a
linear sequence of calculations, or operations. Either the formula may use some
information (i.e. Fields in the Game Database) to produce a result (i.e. changes
to other Fields in the Database). Or the formula may use no information at all
and simply repeat an operation (i.e. modify one or more Fields in a prescribed
way) over and over again. In either case, each step of the formula would always be
performed. The second type of formula would simply check a set of Fields in the
Game Database. And it would send a Primary Event when these Fields matched
certain criteria.

Once you had decided the formulas you were going to use, to build the feature of
a game, you would write one Game Object to evaluate each one. Each Game Object
would respond to one or more unique Secondary Events. And when it received an
Event, the Game Object would use the same formula.

For example, suppose you had another stage in a game, where the player had
to enter a sealed room, in a medieval castle. But when the player had reached the
entrance of this room, he or she would fnd it guarded by a wizard. And, in order
to get past the wizard, the player would be told to fnd at least fve, out of a possible
ten, magical items, hidden around the rest of the castle. Once the player’s character
had collected these items, that character could enter the room and move on to the
next stage.

Now under the second system for producing Game Objects, you would require
one Field in the Game Database and 22 formulas, to build this stage. The Field
would be required to hold the total number of items which the player had picked up.
One formula would be required to reset this total to 0, when the stage began. Ten
formulas would be required to increase the total by one, when the player found an
item. Ten formulas would be required to decrease the total when the player lost an
item. And one formula would be required to send a Primary Event when the total
was greater than fve, to indicate that the stage was over.

So to implement this stage of the game, 22 Game Objects would be required:
1 for each formula. And these Game Objects would need Events to indicate when
the stage had begun, when the player had picked up each item, when the player had
dropped each item and when it was time to check how many items the player had
collected.

It may be tempting to use less Game Objects. Since the ten formulas used
when the player picked up an item would be the same, you may be tempted to
use one Game Object to implement those ten formulas. Likewise, you may be
tempted to do the same for when the player dropped an item. If this stage of the
game were built under the Software Evolution Process, it would certainly suc-
cumb to such temptation. That is to say, one game module would be used to read

184 Event-Database Architecture for Computer Games

and respond to the command to pick up each item. That same module would be
used to count how many items the player had picked up. That same module would
determine when the stage was over. And if all of these magical items had the
same appearance, then that same module would be used to display all of these
items.

But, with the Event-Database Architecture, you would need at least ten Game
Objects, because the items would have different sets of properties, such as the posi-
tion of each one. This would anticipate any changes to the appearance or the other
properties of each item, which could conceivably happen. Furthermore if, for some
reason, the game design were changed, and different weights were given to picking
up one item, than another, then you would need two different formulas for each item.
No two formulas used when an item was picked up would be the same. Likewise,
no two formulas used when an item was dropped would be the same. So you would
require all 20 Game Objects for the ten items.

With this system, every Game Object would represent one formula used by
one element of the game. And, like the frst system for producing Game Objects,
you could predict how each Game Object would behave in response to any
Events. So anyone could combine the different formulas of the game to produce
a desired effect.

4.4 STEP 4: DATA DESIGN

The data design would be basically a description of the Game Database or a
Relational Database. That would contain all of the data that would be used by the
game, including public or shared Game Data as well private or restricted Abstract
Data.

This would include a description of all of the Database Tables, columns or
Database Fields, rows or Database Records in each Table.

This would be designed by the Database Administrator after consulting the Game
Programmers, Game Artists, Sound Designers, Game Designers and Game Testers.

The Game Programmers would be consulted to fnd out what Game data and
Abstract Data they needed to implement the initial features of the game design.
Using whatever system of Events and system of Game Objects had been chosen for
the Event-Database Architecture. This includes implementing common or popular
features such as simulating physics, displaying 2D or 3D graphics and animations,
or implementing Artifcial Intelligence. This includes any data required by the Host
Modules of the Architecture.

The Game Artists would be consulted to fnd out what Game data they required
to build 2D or 3D graphics and animations.

The Sound Designers would be consulted to fnd out what Game data they
required to store and play back sound effects or music or mix sounds at different
points of the game. The Sound Designers would also be consulted about any data
related to Events added to the game. To make sure that the names of the Database
Records for these Events used to implement a feature were consistent. And they
could query the Database to fnd all the Events related to same feature, which they
had to add sound for, using the same name.

185 The Software Production Process

Likewise, the Game Designers and Game Testers would also be consulted about
any data related to Events added to the game. To make sure that the names of the
Database Records for these Events used to implement a feature were consistent.
And they could query the Database to fnd all the Events related to same feature,
which they had to either modify or test, using the same name.

4.5 STEP 5: TOOLS DESIGN

A tools design would be a basic description of the custom and third-party tools that
would be required by the Database Administrators, Game Programmers, Game
Artists, Sound Designers, Game Designers and Game Testers to build a game with
the Event-Database Architecture. You can see an example of it in Table 4.2.

TABLE 4.2
Table of Third Party and Custom Tools for the Archetypal Game Based on
the Event-Database Architecture

Name Marketing Description Staff Copies
LibreOffce version LibreOffce is a modern, easy-to-use All 65
6.0.7.3 open-source productivity suite for word

processing, Spreadsheets, presentations and
more.

GCC 7.5.0 The GNU Compiler Collection includes front Game 20
ends for C, C++, Objective-C, Fortran, Ada, Programmers
Go and D, as well as libraries for these
languages (libstdc++, …). GCC was
originally written as the compiler for the GNU
Operating System. The GNU system was
developed to be 100% free software, free in
the sense that it respects the user’s freedom.

GIT 2.17.1 Git is a fast, scalable, distributed revision All 65
control system with an unusually rich
command set that provides both high-level
operations and full access to internals.

glibc 2.27-3 The GNU C Library – The project provides the Game 20
core libraries for the GNU system and GNU/ Programmers
Linux systems, as well as many other systems
that use Linux as the kernel. These libraries
provide critical APIs, including ISO C11,
POSIX.1-2008, BSD, OS-specifc APIs and
more. These APIs include such foundational
facilities as open, read, write, malloc, printf,
getaddrinfo, dlopen, pthread_create, crypt,
login, exit and more.

libc++ 3.4.25 libc++ is a new implementation of the C++ Game 20

standard library, targeting C++11 and above. Programmers

(Continued)

186 Event-Database Architecture for Computer Games

TABLE 4.2 (Continued)
Table of Third Party and Custom Tools for the Archetypal Game Based on
the Event-Database Architecture

Name Marketing Description Staff Copies
MESA 20.0.8 Free implementation of the OpenGL API Game 20

– GLX vendor library. Programmers

libsdl2 2.0-0 Simple DirectMedia Layer is a cross-platform Game 22
development library designed to provide Programmers
low-level access to audio, keyboard, mouse, Sound
joystick and graphics hardware via OpenGL Designers
and Direct3D.

XBox SDK 1.00 Software library for developing games on the Game 22
Microsoft XBox Game Console. Programmers

Sound
Designers

PS5 SDK 1.00 Software library for developing games on the Game 22
Sony Playstation 5 Game Console. Programmers

Sound
Designers

libmysqlclient Software library for developing MySQL Game 20
5.7.42 Clients. Programmers

libopenal 1:1.18.2-2 OpenAL is a cross-platform three-dimensional Sound 2
audio API. The API’s primary purpose is to Designers
allow an application to position audio sources
in a three-dimensional space around a listener,
producing reasonable spatialisation of the
sources for the audio system (headphones, 2.1
speaker output, 5.1 speaker output etc.).

GDAM GDAM is a digital DJ mixing software Sound 2
package. It aims to be a powerful, Designers
professional-quality music mixing and
remixing system, suitable for live
performance.

CDex CDex can extract the data directly (digital) Sound 2
from an Audio CD, which is generally called Designers
a CD Ripper or a CDDA utility. The resulting
audio fle can be a plain WAV fle (useful for
making compilation audio CDs) or the ripped
audio data can be compressed using an audio
encoder such as MP3, FLAC, AAC, WMA or
OGG.

Blender 2.79 Blender is the free and open-source 3D creation Game Artists 40
suite. It supports the entirety of the 3D
pipeline—modelling, rigging, animation,
simulation, rendering, compositing and
motion tracking, even video editing and game
creation.

(Continued)

187 The Software Production Process

TABLE 4.2 (Continued)
Table of Third Party and Custom Tools for the Archetypal Game Based on
the Event-Database Architecture

Name Marketing Description Staff Copies
Gimp 2.8.22 GIMP is a cross-platform image editor Game Artists 40

available for GNU/Linux, macOS, Windows
and more Operating Systems. It is free
software, you can change its source code and
distribute your changes.

Whether you are a graphic designer,
photographer, illustrator or scientist, GIMP
provides you with sophisticated tools to get
your job done.

MySQL 5.7.42 The MySQL software delivers a very fast, Database 1
multi-threaded, multi-user and robust SQL Administrators
(Structured Query Language) database server.
MySQL Server is intended for mission-
critical, heavy-load production systems as
well as for embedding into mass-deployed
software.

Database Host Queries the Game Database for Tables, All 65
Query Custom Records and Fields matching criteria.
Tool

External Events Manually fres Primary and Secondary Events. Game Testers 2
Host Custom Tool

An example of the third-party tools has already been mentioned in the previous
chapters

Documentation Tools
Programming Tools
Software Libraries
Art Tools
Database Tools
Sound Tools.

The tools design would also include a description of the custom tools that the staff
would require.

Database Host Query Custom Tool would be a tool which allows the staff to
query the Game Database, to fnd Database Tables, Records or Fields which match
a certain criteria and display their contents. This includes Database Records for
Events or Game Objects with a particular name which match the name of a feature
of the game implemented using those Events or Game Objects. So that the Game
Programmers, Game Designers and Game Testers could fnd out information about

188 Event-Database Architecture for Computer Games

features. Or modify or test features by modifying the Database Records of Events
or Game Objects used to implement those features.

The Game Programmers could use this to fnd any Bugs related to some feature.
By examining all of the Events or Game Objects used to implement that feature,
and their Database Records.

The Game Designers could use this to extend a feature by finding the chain
of Events used to implement that feature, and changing the chain of Events. Or
they could change the parameters of a feature by changing the Database Fields
of the Database Records of the Game Objects used to implement that feature.

And the Game Testers could use this to exhaustively test a feature. By fnding
all of the Database Records of the Events and Game Objects used to implement
it. And manually fring the Events through another custom tool. Or changing the
parameters or Database Fields of the Game Objects.

External Events Host Custom Tool would be a tool which Game Testers and
other staff could use to manually fre Primary Events and test the Secondary
Events and Actions that are executed in response to it. There is a complementary
tool called Internal Events Host Custom Tool which allows the players to do the
same. This is described in the chapter 1.5 Step 5: LPmud Tools Design in the book,
Event-Database Architecture for Computer Games: Game Design and the Nature
of the Beast..

NOTES
1. Data design. A description of all the data needed by a game. It is also a description of

all the data produced by the tools used to build a game.
2. Tools design. A description of all the tools used to build a game. These include the

tools used to create the data, to write the computer fles used to build the software, to
process the data or to archive the data and the computer fles.

3. The Software Architecture. The description of all the software modules that would be
required to completely implement an Event-Database Architecture. See the chapter
entitled The Software Architecture.

4. Entity-Relationship diagram. A diagram which shows all the items (or entities) stored
in a Relational Database, and the relationship between these items.

5. Basic Set theory. A branch of mathematics concerned with producing rational conclu-
sions, about items in the real world, by only operating with these in groups. These oper-
ations can be used to build any computer hardware or software, including Relational
Databases and software procedures.

6. Hash-Table. A table of information where the entries have been positioned using a
Hashing Function. A Hashing Function is a software procedure which tries to map
any random set of numbers or words onto a non-overlapping set of numbers, within a
limited range.

7. Professional Database sources. Database Systems: Concepts, Languages, Architec-
tures by Paulo Atzeni, Stefano Ceri, Stefano Parabosci and Riccardo Torlone.

8. Data structure sources. Introduction to Algorithms, second edition, by Thomas H.
Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein.

9. Applied mathematics sources. Vectors in Two and Three Dimensions (Modular Math-
ematics S.) by Ann Hirst.

10. Physics sources. Computational Dynamics, second edition, by Ahmed A. Shabana.
11. Mathematics sources. The Geometry Toolbox for Graphics and Modeling by Gerald

Farin and Dianne Hansford.

189 The Software Production Process

12. Computer graphics sources. Computer Graphics: Mathematical First Steps (c) 1998,

13. Sound engineering sources. The DSP Handbook by Andrew Bateman and Iain
Paterson-Stephens.

14. Free software. Software which can be freely copied, redistributed or modifed accord-
ing to its GNU Public Licence. The software comes with the computer fles used to
build it. So that the software can be easily modifed.

15. Electronic documentation sources. OpenOffce.org 1.0 Resource Kit by Solveig
Haugland and Floyd Jones.

16. Programming sources. The C Programming Language, second edition, by Brian
W. Kernighan and Dennis M. Ritchie. The C++ Programming Language, by B.
Stroustrup.

17. Compiler sources. Using GCC: The GNU Compiler Collection Reference Manual for
GCC 3.3.1 by Richard M. Stallman and the GCC Developer community.

18. Revision Control Software. A tool used to store, retrieve, log, identify and merge dif-
ferent versions of software in production. It stores all the sources which produced each
version e.g. The documentation of the software designs, the computer fles used to build
the software modules, the software data etc.

19. Revision Control sources. Essential CVS by Jennifer Vesperman.
20. File library sources. The Standard C library by P. J. Plauger.
21. RDBMS resources. Using SQLite: Small. Fast. Reliable. Choose Any Three. Paper-

back – Illustrated, 3 Sept. 2010.
22. Graphics library sources. OpenGL Reference Manual: The Offcial Reference Docu-

ment to OpenGL, version 1.2 by the OpenGL Architecture Review Board.
23. Audio library sources. OpenAL Programming Guide © 2006, Charles River Media.

Eric Lenyel.
24. Multimedia library sources. Focus on SDL by Ernest Pazera. Programming Linux

Games – Building Multimedia Applications with SDL, OpenAL and Other APIs©
2001. No Starch Press. Loki Games. John R Hall.

25. Computer Aided Design sources. The Art of 3-D: Computer Animation and Imaging
by Isaac V. Kerlow.

26. Digital imaging sources. Grokking the GIMP by Carey Banks.
27. Relational Database Management sources. MySQL: The Complete Reference by

Vikram Vaswani.
28. ASCII. American Standard Code for Information Interchange. A common character set

used in the US and UK computers.
29. SVG Format. Scalable Vector Graphics Format. A data format used to store images in

a fle, and to display images on the World Wide Web.
30. FBX Format. Film Box Format. A data format used to store 3D models, animations

and associated digital data in a fle, and display 3D models and animations in applica-
tions, developed by Autodesk.

31. XML Format. Extensible Markup Language Format. A language for describing other
languages that describe structured documents stored in a fle (e.g. a thesis, an article, a
User Manual). It was designed to be fexible enough to store and display the huge array
of documents on the World Wide Web. But its fexibility means there can be big differ-
ences in how it is used between any two documents.

32. JSON Format. JavaScript Object Notation Format. A data format for describing hier-
archical data structures in a programming language called JavaScript. It was designed
to store documents in a fle, and to display documents on the World Wide Web.

33. CSV Format. Comma-separated Format. A data format for describing a Relational
Database Table where each row in the table is represented by a line in a fle. And the
columns in the table are represented by words on each line separated by commas. So for
example a 4 x 3 Database Table would have each row in the table represented by three
lines. And on each line the entries in each column would be represented by four words
separated by three commas.

Prentice Hall. Patricia Egerton and William Hall.

https://OpenOffice.org

190 Event-Database Architecture for Computer Games

34. Newline character. An ASCII character which marks the end of a line of text, and the
beginning of the next.

35. Escape character. An ASCII character which is reserved for transforming the normal
interpretation of a following character in a word. It is normally used to transform a
sequence of characters into commands which control how text is displayed.

36. X PixMap Format. A data format used to hold images displayed on Graphical User
Interfaces of computers that use the X Window System.

37. CSV Format sources. UNIX (TM) Relational Database Management by Rod Manis,
Evan Schaffer and Robert Jorgensen.

38. SVG Format sources. SVG Essentials© 2002, O’Reilly Media. J. David Eisenberg.
39. X PixMap Format sources. X Pixmap© 2010, Beta Publishing. Lambert M. Surhone.
40. Digital Audio Tape. A magnetic tape used to digitally record music or computer data.
41. Secure Digital Card. A small portable fash memory card or microchip that stores data

in a computer memory, up to 2 Gigabytes in size.
42. Secure Digital High Density Card. A Secure Digital Card that can store up to 64 Giga-

bytes of data in computer memory.
43. Pulse Code Modulation. A method of encoding an analogue signal in a digital data

format. The signal is sampled at a constant rate, and the amplitude at each interval is
converted into a number within a limited range.

44. Digital recording sources. Desktop Audio Technology by Francis Rumsey.
45. Digital playback sources. Modern Recording Techniques by David Miles Huber and

Robert Runstein.
46. Checksum. A value that represents the total value of a series or sequence of data. That

is used to check when there is an error in that series or sequence, when it is transferred
from one computer or storage media to another.

47. Logic path. Any one of a fnite, distinct sequence of actions (or instructions) that can
be performed with (or within) a software system (or its software procedures).

191

5 Limitations or
Criteria for Use

Many software projects go over schedule because the projects attempt to extend the
software beyond its original limitations. At which point, the software becomes part
of the problem, instead of the solution. Although the Event-Database Architecture
attempts to mitigate this very problem, the Architecture could just as easily
become part of it. Thus, it would be important to understand the limitations of the
Architecture.

These limitations are defned by the problem the Architecture attempts to solve.
This has already been described, but here is a summary:

1. The Architecture would not be benefcial to projects where the game
design was complete. It would not be benefcial to projects which followed
the analysis, design, implementation and testing of the software, in distinct,
non-overlapping phases.

2. The Architecture would not be benefcial to projects where the Game
Producers, Game Designers, and anyone else responsible for producing the
game design did not think in terms of a chain of events.

3. The Architecture would not be benefcial to projects where the shared
Game data and the Abstract data were well-defned.

Probably just as important as the items listed, in the limitations of the Architecture,
are those which are not. Note that there is no description of whether the Host
Modules (e.g. Game Controllers Host and Events Host) should be local to each
other, on the same machine, or on remote machines. There is no mention of whether
you should only have one or more of each type of Host Module. There is no limit
to how many Records each Host Module may use to hold information it requires.
However, there is an explicit reference, in the description of the Architecture, for
the need to have only one Central Host and one Game Database. Finally, there is
no description about what tools could be used to create each type of Host Module.

It may be diffcult to know when these limitations apply to any particular project.
For example, how could you tell when a game design was complete? Also how could
you tell when the Game data and Abstract data were well-defned?

5.1 COMPLETE GAME DESIGN CRITERION

Being able to identify an incomplete game design would be a per-requisite to decid-
ing whether you should use the Event-Database Architecture. To do this, you
may consider the criteria used in the classic software production life cycle. This
begins with an analysis of the requirements the software must meet. The document

DOI: 10.1201/9781003502784-5

https://doi.org/10.1201/9781003502784-5

192 Event-Database Architecture for Computer Games

containing these requirements is called the User Specifcations. In Computer
Games, the game design is the User Specifcations. The criterion for determin-
ing a complete set of User Specifcations is that it should be possible to write the
User Manual from the Specifcations. This is an old criterion, which seems to have
become neglected.

This would mean that a game design should contain a description of every stage,
in the fow of the game. From the Copyright screens that would be shown when the
game starts, to the Congratulation screens that would be shown when the player
completes the game, there should be a clear vision of what each stage would be like.
A stage could be either a screen or menu or a sub-section of the Game World, where
a sub-plot would take place. It should be possible to choose any of these stages and
give a description to a player of what it would look like, sound like and what options
would be available. These descriptions could be at whatever level of detail, short
of a breakdown of the methods that would be used to implement each stage (i.e. a
technical design).

A complete game design should contain precise fgures for the number of items in
each stage: for scores, times, distances and sizes. It should contain a precise descrip-
tion of the position of items on each screen, or menu, or section of the Game World.
From the smallest item to the largest, all should be described. It should clearly out-
line whether it would be possible for an item to move, how the item would move,
why the item would move, and where the limits would be to its areas of movement.
It should clearly describe what sounds each item makes, when these sounds start
and stop, whether a sound occurred intermittently or not and how the volume of the
sound varies. It should include precise fgures for the times between the start and end
of a sound, the times between an intermittent sound, the volumes of each sound and
the priority of one sound over another. It should also describe any music that could
be played during that stage of the game in a similar fashion.

The structure of the document should match the progression of the game. It
should begin with the background to the game, and the overall goal. It should then
follow the course of the game, beginning with the frst stage and ending with the last.

Since the structure of the document follows the course of the game, it should not
repeat itself. If two stages of the game shared some of the items of the User Interface,
then the description of the second stage, in the game design, should simply refer
back. It should simply refer back to the similar items in the preceding stage. It should
not copy these descriptions. If the stages shared, for example, the same options on a
menu, commands, characters, creatures or other items in the Game World, the game
design should be structured well enough. So that these could be referred back to, in
subsequent chapters, after these had been introduced. Otherwise, the game design
should not repeat itself.

Instead, a follow-up document, such as an appendix or a technical design, should
be used to repeat items mentioned in the game design. These should group common
features of the game design and describe each one.

For example, describing all the graphics, sounds or music, which would be used
in the game, would give a useful cross-section of the game design for a Game Artist,
a Sound Designer or a Game Programmer. They could use this to set out their plans
and schedules, for creating and using these graphics or sounds.

193 Limitations or Criteria for Use

Another example would be a description of all the computer-controlled characters
in a game. This would help a Programmer see the common behaviour between these
characters. So that he or she could write a software module, which could be reused
by other modules to build of these characters and their Artifcial Intelligence.

5.2 INCOMPLETE GAME DESIGN CRITERION

Contrast the complete game design just described with an incomplete one. An incom-
plete game design would avoid specifying precise fgures for each stage of the game. It
would content itself with adjectives like ‘little’, ‘large’, ‘more’, ‘less’, ‘big’ and ‘small’.
It would even turn adjectives into nouns as it struggles to describe its vagueness. It
would include words like ‘shootable’ for an item in the Game World that can be shot
at, ‘moveable’ for an item that can be moved and ‘jumpable’ for a gap in the Game
World that can be jumped. It would include phrases like ‘frst playable’ to refer to the
frst version of the game which gave a practical demonstration of the initial stages of its
User Interface. The most signifcant of these would be a word like ‘deliverable’. This
would be used to refer to each version of the game that would be examined, at regular
intervals, along the Software Evolution Process, by the fnancial backers of a project or
by its leadership. These examinations would mark the points at which the process was
meant to be scrutinised. And these would also mark the points at which the feedback
was meant nominally to be sought from the software user.

But, of course, the process itself would be unscrutable. So, instead, each exami-
nation would be limited to a tactless analysis of the state of the latest version of the
product. This would involve either a superfcial examination for any obvious defects
in each version. Or this would involve an examination of the aggregates and deposi-
tions taken from the process so far. These aggregates would include a count of the
number of visible errors, how many features were added to the product since the
last examination, how many were successfully implemented and the cost of each
one in terms of resources, such as time, money or staff. The depositions would not
come from the fnal software user. Instead it would come from the impressions of
Game Testers, Game Producers, fnancial backers, Creative Directors, Technical
Directors and other people whose opinion was considered key who are sometimes
called ‘Stake Holders’ or ‘Key Stake Holders’.

One example of how these aggregates would be collected would be through the intro-
duction of time sheets, at the beginning of the production process. These would be used
to monitor how much time each member of staff had spent on a task, and how many
were involved in each task. Another example would be requests for abortive schedules,
from the staff, at the beginning of production. That is to say, they would be asked for
schedules which had a purely cosmetic function. None of the times for the tasks would
be produced after any analysis had been carried out. And there would be arbitrary limits
placed on the time spent on each task. Each could be no longer than two or three days.
And anything longer than a week would have to be broken down further.

These schedules would be nothing short of an audacious attempt to regulate a
process which has defed regulation since its conception. At the beginning of the
Software Evolution Process, there would be no complete plan for building the soft-
ware. There would be no complete game design or subsequent documents explaining

194 Event-Database Architecture for Computer Games

the plan. So there would be no complete description of the steps which were going to
be part of that plan. Consequently, there would be no complete measure of the time
each step would take. And there would be no measure of the overall time the project
should take. Hence, some other means would be necessary to measure its progress.
One of the common alternatives would be to forcibly regiment the remaining steps
into the rest of the time allocated for the project, at regular intervals.

Hence, the description of initial set of tasks, given to the staff to produce a sched-
ule from, would be in a vague, abbreviated form, such as items on a menu or a bill.
The majority of the tasks would be described in one or two keywords, while a hand-
ful would be described in a single sentence. The set of tasks for each member of staff
would be assigned to them, and in no particular order. These would not be chosen
by them, in response to some problem which they had investigated. There would
be no risk attached to each task, by the staff, as a result of this investigation, which
would determine the order in which these were performed. Furthermore, the staff
would only be given the opportunity to reveal the remaining steps. By breaking any
task which they expected to take more than a week, into smaller tasks over two or
three days, they would reveal the remaining steps. But they would not be given the
opportunity to set the times for these tasks. That would be determined by the forced
regimentation of the remaining steps at regular intervals.

Meanwhile, the depositions used to examine a Software Evolution Process would
be in the form of statements taken from informal interviews. These interviews would
include only a small subset of the staff: comprising the leadership and some senior
members. After which, the depositions would be combined with the aggregates that
had been gathered. And a comparison would be made with another, equally tactless,
case study of some other Software Evolution Process that had occurred in the past in
projects either at the same Software Developer or in another company.

Furthermore, after the examination, the feedback for the process would not directly
come from the end-users of the product. Instead, it would either come back, more fre-
quently, from the leadership of the staff. Or it would come back, less frequently, from
their fnancial backers. Or, at the beginning of the process, if a previous version of the
game had been released, it would come back from the review of that release, by the
Media that cover the Computer Games industry. Or, penultimately, towards the end of
the process, it would come back again from any contacts the Software Developer had
in the Media. Either way, the feedback would be based on some implicit understanding
of what the users want. And this implicit understanding would be refected by the huge
gaps within an incomplete game design, especially its User Interface.

Although the game design would include a description of how some parts of the
User Interface would look, it would not be comprehensive. It would, for example,
include a description of a menu that would appear. But it would omit some of the
options on that menu. It would omit the position of each option, or it would generalise
these positions. Similarly, the game design would include a description of a location
in the Game World. But it would either omit the number of characters, buildings,
other structures or other items in that location. Or it would generalise these positions.

Rather than facilitating the writing of a User Manual, an incomplete game design
would read like a User Manual. It would use general rules to describe each screen,
menu, or section of the Game World. But only one instance of each screen, menu or

195 Limitations or Criteria for Use

section of the Game World, would be described in detail. And this would be repeated
throughout the game design, for large sets of screens, menus and sections of the Game
World. The game design would use slang terms, from whatever activity the game was
trying to authentically capture, without explanation. It would use acronyms, abbrevia-
tions and the jargon of the Computer Games industry without explanation.

There would be two signs every incomplete game design would exhibit and could
not hide. These signs would be clear evidence of its unfnished status. The frst sign
would be retroactive thinking, which would cause lots of repetition.

An example of this would be the name of an item being mentioned in one chapter,
which would only be explained in a later chapter. Another example would be when, in
the middle of a chapter describing one topic, the document suddenly interjects with a
detailed description of a second topic. But this second topic would belong in a differ-
ent chapter or would already be described in another chapter. This interjection would
be caused by a partial review of the document and a sudden realisation of the vague
aspects within it. Instead of following this up with a comprehensive review, a crude
attempt would have been made to hastily patch the vague aspects that were found.

The second sign of an incomplete game design would be the most damning indict-
ment of all. These would be where the document itself claims to be unfnished. An
example of this would be clauses that describe features which would be subject to
change. Another example would be statements which referred to features that would
be included in future drafts.

But, of course, the moment the rest of the production process commenced, the dam-
age would have been done! And the Software Evolution Process would have begun.
Any features which were labeled as subject to change, will never be fnalized. An
incomplete game design would remain in a draft state until, and even after, the process
has been fnished. The reason often given for leaving it unfnished would be that, as the
software production progressed, the obscure parts of the game design would become
clear. The hope would also be that these would not involve any major changes.

Yet this would never be the case. Other parts of the game design would be re-
drafted as well. Different members of the staff would take advantage of the draft
state of the game design, to make both formal and informal changes. Thus, complet-
ing the unfnished parts of the game design would never be trivial. The cost, both in
terms of fnance and time, would spiral upwards.

The signs of an incomplete game design would also be evident in subsequent docu-
ments. The software design, written in the second phase of a software production life
cycle, would depend on the User Specifcations. Similarly, in the Computer Games
industry, the technical design would depend on the game design. The technical design
would at least refer to, if not completely reiterate, items in the game design. It would
link these items with a breakdown of the software components, the tools and the meth-
ods, which would be used to build these items. The technical design would also be used
to measure the progress of the production process, and to test the game at the end of it.
The fner granularity of its description would make it better suited for these purposes
than a game design. But only because the game design is so vague and incomplete.
In the classic software production life cycle the game design (i.e. User Specifcation)
would be good enough the draw a User manual and a test plan from. In the Software
Evolution Process, the game design is not good enough for that.

196 Event-Database Architecture for Computer Games

However, if the game design were not complete, the technical design would also
not be complete. All of its advantages would be lost. The production process would
lack objective criteria with which to measure progress. Instead, it would proceed
through a lot of trial, and even more errors. This would be another characteristic of
an incomplete game design.

The software production process would proceed through subjective criteria such as
trust and perception. Since the documentation would not be complete, no one would know
what the effect of each proposed change could be. So each proposition has to be accepted
based on the trust invested in whoever proposed it. And the assessment of the effect has to
be based on the immediate perception of the software, by other members of staff.

Thus, the production process would become a melodrama, with the staff as the
audience, in which the audience swings from one extreme emotion to next. One
moment, the staff would be gripped by anxiety, when a change causes sudden, inex-
plicable errors. The next moment, they would all be breathing a huge sigh of relief,
when someone somehow manages to fx these errors. One moment, a villain emerges
for proposing or conducting changes whose immediate effects appear to be cata-
strophic. The next moment, a hero emerges to save the day, with corrections which
would be just as mysterious as the changes that produced the crisis in the frst place.

Each scene would draw out personalities, amongst the staff, seeking to play a
key role. And they would achieve this ambition either by appearing conscientious or
drawing attention to errors caused by other members of staff, in order to gain trust.
Or they would manufacture a crisis, if they did not have the patience to wait for one
to emerge. By literally rolling their eyes, banging their hands and heads on tables,
moaning, groaning or swearing out loud, they would turn any common errors they
encounter into a crisis. With loud cries of ‘This is bad! This is really, really bad!’,
‘That is shocking!’, ‘Oh my God! Oh my God!’, and other such exaggerated postur-
ing, they would draw attention. So that they could then suggest ways out of the crisis
and improve their perception amongst the staff.

Hence, the melodrama of a Software Evolution Process would not produce good
personalities, who would seek to complete the game design. Instead, it would pro-
duce devious personalities who would target those, involved in the process, with the
ultimate trust or perception.

In the Computer Games industry, this ultimate trust or perception would be shared
by both the leadership and the fnancial backers of the project. Yet despite the strategic
importance of a game design to the project, both parties would be ambivalent about it.
And this ambivalence would fuel constant debate, between them, about what should
constitute a game design, throughout the production process.

Although they would all recognise the potency of a game design, to sell a proj-
ect, many would ascribe design to products (i.e. other popular Computer Games)
on which no resources have been spent designing. That is, no time, no money and
no staff has been spent on its design. Others would believe there was no such thing
as a complete design. Some would impatiently push the arguments to the extremes,
whenever the subject came up, to immediately cut off any further debate. And they
would simply argue that a design could not solve everything.

However, this last argument would be no better than the rest. It would be as
equally vacuous as its counterargument. That is, it would be impossible to make a

197 Limitations or Criteria for Use

complex product without any design. Both arguments would shed no light on the role
of design in software production.

Clearly, the answer would lie somewhere in between the two extremes. It would
lie somewhere a million miles to the left of trying to solve everything, and a couple
of yards to the right of attempting to build a complex product without any planning.
A game design (and its technical design) would not have to cover all the problems
of engineering. Nor would it have to cover all the problems of engineering computer
software. Nor would it even have to cover all the problems of engineering the soft-
ware of Computer Games. It would only need to describe one game.

Many complete designs have been written, in other industries, which could help
resolve the debate. The Computer Games industry has not been alone in identifying
when a game design (and hence a technical design) has been complete. Other indus-
tries have faced the same problem of deciding when the analyses of the requirements
of a product, and the design which will meet those requirements, were complete.

These industries have followed a similar production process to those of Computer
Games. This began with an analysis of the requirements of the product. This was
followed by a design of the components, and the process used to build and assemble
these to meet the requirements. The design was then implemented and the result was
tested. These products have been as complex as, if not more complex than, Computer
Games. The manufacturers had to produce tangible, durable goods with practical
benefts. They did not have the luxury of making products with no practical applica-
tion. They had to produce goods which, to the consumer, solved challenges, instead
of creating imaginary ones. And the production process involved far more disci-
plines than you would fnd in the Computer Games industry. The complete designs
they have produced are evidence that it is possible in the Computer Games industry,
but for a lack of commitment.

In industries, such as the Construction or the Electronics industries, a complete
design has been a per-requisite to any project. The expenditure on design1 has taken
up a major part of a company’s revenue. A major share of the personnel has been
committed to ensuring each design was complete.

In contrast, in the Computer Games industry, the initial game design has been
written by a small group of Game Designers. Typically, in a team with 10 Game
Programmers, there would be 20 Game Artists, 1 Sound Designer, 1 Game Producer,
3 Game Testers and 2 Game Designers. The ratio of the staff that would be Game
Programmers would be roughly one-third, while the Game Artists would be about
two-thirds. The numbers of the other staff, including the Game Designers, would
not be related to the size of the team. And they would be no more than 3 or 4, in
total, no matter whether the size of the team was 40 or 140. Indeed, some Software
Developers have made games with no Game Designers. And their roles have been
completely subsumed by other staff, such as the Game Producers.

But in most cases, with the exception of the Game Producers, and Sound
Designers, the Game Designers have been the smallest contingent involved in the
production of Computer Games. And their efforts have to be supplemented by the
Game Producers, the Game Artists, the Game Testers, the Sound Designers and
the Game Programmers, after the implementation of the technical design has
begun. Even though their decisions had the same strategic importance as the Game

198 Event-Database Architecture for Computer Games

Producers’, the expenditure on the Game Designers has not been commensurate.
And they have been treated as second-class citizens. This has been a direct result
of the little credence given to the game design, in the Software Evolution Process.

The initial technical design too has been drawn up by an equally small subset of
the Game Programmers. And their efforts have to be subsequently supplemented by
the rest of the Programmers.

In the Construction industry, companies have been set up which just consist of
architects. And the whole business of these companies has been committed to the
complete design of a building prior to its construction. Nobody would commission
a house or an offce with a room or a door missing. But in the Computer games
industry it is common place to commission a game with a menu, a level or part of the
Game World completely missing.

In the Electronics industry, companies have been set up which produce different
parts for computer hardware. To do business, some have completely designed their
product and outsourced the manufacturing to other companies. While some have
sold the licences for their designs. So that other manufacturers could use it to build
and sell the product, as if it were their own.

Both the Construction and the Electronics industries have employed teams of
Drafters.2 These employees draw up detailed designs for the buildings and elec-
tronic circuits. This has been something they have trained for and specialise in. They
have used Computer Aided Design3 (or CAD) software tools to do their work. These
tools have been sold on the basis that it was possible to produce a complete design.
Derivatives of these tools have, in fact, been used in the Computer Games industry,
by Game Artists. For example, a popular tool in the Computer Games industry is
called 3DS Max by Autodesk. Autodesk also made AutoCAD which 3DS Max is
derived from. So there has been clear evidence of the viability and importance of a
complete design to a production process. Therefore, the scarcity of complete designs,
in the Computer Games industry, does present a major challenge.

Some in the industry have intuitively believed the greater complexity of the pro-
duction process of Computer Games has been responsible for scarcity of complete
designs. However, if you were to compare the two classes of industry which the
Construction, the Electronics and the Computer Games industry belong to, you
would fnd that this could not be the case.

The Computer Games industry belongs to the Software industry. The Software
industry has been a service industry. The products the industry has produced par-
tially, or completely, automated the existing processes of their clients. Thus, they
could see a working model which their products would substitute.

Whereas the Construction and the Electronics industry have been manufactur-
ing industries. Their clients did not have a working model for which they would
provide a substitute. So the production processes of these industries had to produce a
simulation of a working model, before producing the product itself. This has meant
there have been more component parts of these processes, and more dependencies
between these components, than in the service industries.

The Computer Games industry has been a service industry. And their processes have
been no more complex than the rest of the Software industry. Within any given year, a
few original games may be released, which have no existing working model to help the

199 Limitations or Criteria for Use

production of these games. But the vast majority would not be original. These would
either be based on flms, books, well-established sports or other forms of games, such
as card games and board games. Or these would be based on previously successful
Computer Games. The companies which produced these games would have neither the
inclination, let alone the resources, to carefully construct, for example, an original novel.
Before subsequently building a game based on that novel. If they did, the time it would
take to produce these games would be twice as long. Instead of a period of between 18
and 24 months to produce each game, it would take around three to four years.

Even assuming all of the games were original, the Software Developer would
have been in an even more advantageous position than a company in the manufac-
turing industries. Whereas in a manufacturing industry, like Construction, one com-
pany may be commissioned to produce a design for another to use. In the Computer
Games industry, the client would be relying on the Software Developer, to produce
the designs which they were going to use. So the Developer would have the opportu-
nity to set the requirements which they themselves would meet.

The client may interfere with the designs of the Developer. Or the client may
interfere with the production process, by demanding to periodically see the state of
the unfnished product. Some would like to believe that this makes the production
process of the Computer Games industry more complex than the others.

But, like the Construction and the Electronics industry, the clients want the prod-
uct to meet their requirements: not the Developers. Like these other industries, the
clients want to be able to scrutinise the production process. Perhaps the clients have
more intelligence than the Computer Games industry gives them credit. Perhaps the
clients recognise that some of the defnitions of a complete design and a production
process, in the industry, lacks credibility. But the clients have not been any more
demanding than those of the other industries.

Some believe that the need to save material resources has been the reason why a
complete design has been so important to manufacturing industries. Since there were
no expensive materials involved in making changes to a product, in the Computer
Games industry, a complete design has had less signifcance. But there would be
more advantages to having a complete design than saving material resources. These
would be, namely, saving time, money and ensuring the quality of the product.

Saving time saves money, no matter what your industry. Even if you did intend to
revise a game several times, the advantages of being able to understand the effects,
of your changes, would outweigh the time lost writing up a design. In fact, there
would be no limit to how much time could be lost due to a lack of understanding. Nor
could anyone measure the cost of a loss of reputation, when these changes caused
errors which surfaced later on, after the product had been released. Cutting back on
quality would lose you money, no matter what industry you were in.

The Computer Games industry has catered for quality, but only for Quality
Control4 not Quality Assurance.5 Not withstanding that the third phase of the pro-
duction process of Computer Games being called ‘QA’, and the presence of depart-
ments in the Software Developers called ‘QA Departments’, the Computer Gamed
industry has never provided Quality Assurance. It has only provided Quality Control.
This has occurred when, just prior to its release, a product has been tested against its
requirements. This process, however, has already been undermined by the fact that

200 Event-Database Architecture for Computer Games

these requirements i.e. the game design was not completed. The testing process has
been more empirical than methodical. The process has been further undermined by
the fact that the tests were carried out against the game design, and not the more in-
depth technical design.

As a result, the testing of the software has not been exhaustive. Crude substi-
tutes have been deployed, instead, to perform some kind of exhaustive test. This
has included Soak Testing.6 Normally, this form of testing would be used to identify
problems with the performance of a system, after it was complete, and there were no
errors in it. This would test the system under high usage over an extended period of
time. But, in the Computer Games industry, these tests have been used to catch errors
in software, before it was complete. Furthermore, this has been abused to give the
production process credibility: by implying the software was complete.

However, even Soak Testing requires a complete analysis of the components of
the system to be tested (i.e. a complete game design and technical design). And in
the absence of this analysis, these tests have no meaning and remain empirical. Thus,
despite the introduction of jargon such as Soak Testing, into the process of testing
Computer Games over the years, to give it credibility, empiricism has continued
to dominate it. That is, the staff have been left to assess the product based on their
own senses, personal instincts, experiences, emotions and intuitions. Although a few
of them do, none of them have had to rationalise why some aspect of the software
constitutes an error. And the few that do would not base their rationalisation on an
agreed set of facts (such as items in a game design).

Along with the credence given to empiricism in the Software Evolution Process,
a lot of credence has been given to self-assessment to create a standard of quality for
the fnal product. That is to say, a lot of trust has been placed in different members
of staff testing the quality of their own work. Sometimes, they vary this scheme, by
requiring staff to have their immediate colleagues review and approve their work
before it is submitted into a Software Repository or archive of fles used to build the
game. They call this scheme, Buddy Checking. But it amounts to the same thing.
And that, somehow, this would naturally produce a consistent, high standard of qual-
ity throughout the fnal product.

Intuitively, most industries would expect staff to be more lenient when judging
their own work than when judging others. And that self-assessment in a collaborative
venture had no hope of creating a product of consistent quality. Since different staff
would judge their own work by different standards. In the Computer Games industry,
however, this notion has become incredulous. Likewise, the notion that a handful
of dedicated staff, such as the Game Testers, had no hope of being used to set up a
consistent standard for assessing quality has also become incredulous.

It is in keeping with industry’s spirit of empiricism and self-assessment that the
Game Testers have been left to their own devices: to use their own experiences and
intuitions to assess the fnal product. Most of them have been temporary, seasonal
workers, who only joined the production process at the end of it. Most look at the
position as a merely temporary one. They have used it, and it would be presented
them during their interviews, as a stepping stone to achieve a more senior position,
as a Game Artist, Game Programmer or even a Game Producer. The only qualifca-
tions they required were a passion for Computer Games, to have spent an unhealthy

201 Limitations or Criteria for Use

amount of time playing old games, and to be willing to work many more hours, days,
months or years testing new ones. They have taken little or no part in the drafting of
the initial game design. In short, they have been treated like second-class citizens.
And, just like the Game Designers, this has been a direct result of the little credence
given to the game design, in the Software Evolution Process.

Their testing process has been limited to the view of the quality of the fnal prod-
uct i.e. Quality Control. It has completely ignored the production process. If any
decisions were made which wasted a lot of time, or caused major problems later on,
these have been swept under the carpet. Quick and dirty solutions have been used to
fx the errors that had arisen as a result. These have been the only solutions possible.
During the fnal stages of a long production process, there is no way you can turn a
low-quality product into a high one.

Compare this approach with the Construction or the Electronics industry. These
industries have understood that quality is a process, not a product. This has been argu-
ably why they have paid so much attention to their designs. They have realised that
through a design, you have a chance to carefully examine your ideas and, more impor-
tantly, the way you think. The way you think determines the way you work. The way
you work controls what you produce. Thus, by ensuring their minds, they have ensured
their products. Or as the proverb says, watch your character, it becomes your destiny.7

The word quality8 simply means characteristic. When it has been applied to a
product, it has meant that the characteristics of the product met some, or all, of a con-
sumer’s needs. No person or product would achieve a characteristic by chance, but by
habit. A product must always behave a certain way for that behaviour to be a char-
acteristic. No human-made product would behave in this manner except by design.
Therefore, it would be impossible to achieve quality without design. This would
apply to each individual characteristic that makes up the quality of the product.

Without a design, there would be no link between a consumer’s needs and a pro-
ducer’s service: between a problem and a solution. When quality was applied to a prod-
uct, without a design, there would be only one perspective left to look at it from. This
would be, namely, the producer’s needs and requirements. These needs would only be
coincidentally related to a consumer’s needs. The producer’s need to sell or improve
their products or services would only be possible if the consumer happened to need,
and were willing to pay for, the quality of the current product or service. And, eventu-
ally, the producer would subsequently fnd out that what they thought was high quality
had been ignored in the market place. These rude awakenings have been why so many,
the Computer Games industry included, have found quality so hard to describe.

The fact that a design relates a problem to a solution has also been why they have
found design so hard to describe. They have either unconsciously forgotten the prob-
lem. Or they consciously ignored the problem because they have been afraid. They
have been afraid of looking at a problem in detail, and the long list of solutions they
would have to commit to as a result. Instead, they have sought the licence to be free
of a consumer’s needs, or the constraints of a problem.

Once, of course, they had freed themselves from the constraints of themselves
from the constraints of the problem, it has then been very diffcult to defne what
design is. And it has been very easy to believe that any implementation (especially
any novel solution) was synonymous with a design. This has been exactly what has

202 Event-Database Architecture for Computer Games

happened to the Computer Games industry. In other industries, such as Construction
and Electronics, the role of design9 has clearly been defned by the need to explain
the production process. In the Computer Games industry, the role of design has been
something mysterious, which has only physically manifested itself in novel solutions.

When some novel (or complex) feature has been implemented, it has been assumed
that this feature has been designed. When a popular or successful Computer Game has
a novel or complex feature within it, it have assumed that that feature and by extension
the game has been designed. Someone must have thought about it, before adding it.
Therefore, it must have been designed. It has not mattered that the person, who did this,
did not write it down in any comprehensible manner. Nor has it mattered that neither
that person, nor anyone else, could repeat the same creative process.

Of course, the assumption of a causal relationship, between the implementation of
a novel (or complex) solution and a design, has been false. You could implement such
solutions by experimentation, duplicating features from other products or combining
both these techniques. You could keep adding different features to a game, piece-
meal, like a sculptor or a painter, till serendipity offered you a crude gift.

Of course, like a piece of sculptor, you could not reproduce exactly the same
result, using the same tools. Nor could you identify and examine the component
parts of a statue, or the process that made it. Instead, these three features would be
the characteristics of a true design, a complete game design and technical design,
and its advantages over a false one:

1. You could follow the design to produce the same product every time.
2. You could identify and test the component parts of the product.
3. You could identify and test the component parts of the production process.

Since you could identify the component parts of a product which had been
designed, you could simplify the testing process. You could test the different parts
individually, in a modular form. This would reduce the complexity of always test-
ing the entire product, along with many interdependent parts, to a simple series of
smaller tests, of independent parts.

So when you began testing a product, whose requirements were analysed, and man-
ufacture was designed, you should know how many features would be tested. This
should be clear from the component parts, and the features in each. The total number
of untested features should begin from a fxed number and go downwards. It should
never rise above its start point. For a product whose requirements were not analysed,
and manufacture was therefore not designed, the number of untested features would be
arbitrary to begin with. What is more, it would rise above its start point.

In the Computer Games industry, the number of untested features would typically
be stored in a Database. This Database would be controlled by software known as
a Bug Database. After the game had been released, this would normally be used to
produce charts and graphs, showing the progress of the total number of untested fea-
tures, and errors, from the beginning to the end of the testing process. These graphs
would provide clear evidence of an incomplete game design.

Some Software Developers introduce this Bug Database at the beginning of the
production process. And the reference to this tool, in the game design or technical

203 Limitations or Criteria for Use

design, at this point of a process would also be evidence of an incomplete game
design. For the gaps in the game design would be logged as errors in the Bug
Database. And the Database would be abused as a device for designing the product,
as supposed to testing it. This would happen due to the absence of any clear plan for
building that product. If there were a plan, and this were recorded in some documen-
tation, such as a game design or technical design, there would be no need to keep
another record of what items were missing, in a Bug Database. Since the document
itself would make it self-evident, what items were missing in the product?

In fact, the classic software production life cycle uses this criterion to identify
a complete software design. That is to say, a software design would be complete if
you could produce a test plan from it. In the Computer Games industry, the techni-
cal design is the software design. So if it were not possible to produce a clear plan,
of how a game would be tested, from its technical design, then that would indicate
that its technical design was not complete. And by implication, this would provide
further evidence that its game design was not complete.

By itself though, this evidence would not be conclusive. The game design could
have been completed, but the technical design was not. However, this would be con-
clusive evidence if it were accompanied by either the fact that every component, of
the game design, had been covered in the technical design. Or, if it were accom-
panied by the other signs of an incomplete game design, that have already been
mentioned.

5.3 COMPLETE DATA DESIGN CRITERION

Being able to recognise when the Game data and the Abstract data were not well-
defned would also be a requirement, before deciding to use the Event-Database
Architecture. These data would normally be described in the technical design for a
project. So you could use the same criteria used to detect a complete technical design
to detect when these data were well-defned. This criterion is, as has already been
mentioned, whether it is possible to produce a test plan from the technical design.

For the Game data and the Abstract data, this means it should be possible to
provide a clear plan for modifying each one. And the plan should include a method
for monitoring the effects of each modifcation. Furthermore, the results of each
modifcation should be predicted in the plan.

For example, suppose some data would be used to display an item, lying around
in one part of the game. It should be possible to modify that data. And it should be
possible to see the change in the appearance of that item, in the game.

Another example, suppose some data would be used to play a sound, when a
player performs one command. It should be possible to modify that sound. And it
should be possible to hear the new sound for that command.

Another example, suppose some data would control the speed of one of the char-
acters that moved around in the game. It should be possible to modify that speed.
And it should be possible to measure the new speed of that character.

For each piece of data, it should be possible to know its limits. That is to say, the
range of values, the different formats, the minimum and maximum size, or the maxi-
mum length of that data should be clear. And it should be possible to give that data

204 Event-Database Architecture for Computer Games

an invalid value, an invalid format, an invalid size or an invalid length and observe
the effects. The effects of these errors should be accommodated in the defnition
of the data. So that this defnition could be compared with the effects of the errors
manufactured during the test.

Another criterion that may be used, to detect when the Game data and Abstract
data were well-defned, has already been mentioned in the description of the Game
Database. The Game Database, of an Event-Database Architecture, too would be
required to be well-defned. This would be determined by its transparency to all the
members of the staff involved in the production process.

That is to say, it should be possible for the members, using a variety of software
tools or hypothetical speculations, to modify the data effectively to achieve a goal. If
the defnitions of the data were completed, each use of that data should be consistent
with another. Each person’s understanding of that data should, at least, be consistent.
This should apply to the general Game data and the Abstract data.

Some Abstract data may require extensive knowledge of an academic feld (e.g.
Mathematics). So, in these cases, only those with that knowledge should be able
to modify these data to effect. However, anyone, without knowledge in that feld,
should still know how these data were related to the general Game data. And that
this relationship was an academic feld (e.g. Mathematics). And, in the case of the
Event-Database Architecture, the Entity-Relationship diagrams accompanying the
data design should also show this relationship. Since all specialised Abstract data
would be derivatives of the general Game data. These data would be a combination
of general Game data and data from a specialised feld. So the Abstract data should
still use the language from the description of the general Game data. And hence,
everyone should still be able to identify the relationship of any Abstract data to the
Game data.

5.4 INCOMPLETE DATA DESIGN CRITERION

Some of the symptoms, in a project, of the Game data and the Abstract data not
being well-defned have already been described. These were included in the descrip-
tion of the problem that the Event-Database Architecture attempts to solve (see the
chapter entitled The Problem).

Briefy, these included the inconsistencies in the quality of the descriptions of
the data. These also included the selection of arbitrary names and words, by the
members of staff, to describe that data, based on their background and experience.
Finally, these included the incorporation of these arbitrary names and words into a
degenerative language for communicating between the staff. This has a degenera-
tive effect on their productivity. And that, in turn, affects the overall success of the
project, and its ability to innovate.

However, there are further symptoms of poorly defned Game data and Abstract
data. These relate to how a game would be tested at the end of a software production
process. When the data has not been well-defned, it would not be possible to test
that data.

It would not be possible to predict what the effects of modifying that data would
be. So you could not plan any comprehensive test of that data. Either some of the

205 Limitations or Criteria for Use

data would have no description at all. Or some would only have a partial descrip-
tion. So you could not predict what the effects of all the possible modifcations of
that data would be. Or some descriptions would not include the limits of that data,
and an explanation of what would happen if these limits were exceeded. That is to
say, the descriptions would not include the range of values, the different formats, the
minimum and maximum size, or the maximum length that data could take. So you
could not predict what to expect if you attempted to modify that data erroneously.

The ultimate symptom of poorly defned Game data and Abstract data is the lack
of transparency of these, to the members of staff. Either all the members cannot tell,
only from the description available of any given data, whether that data was general
Game data or specialised Abstract data. Or, when they can distinguish between the
two classes, they cannot relate that data in one class, to some data in the other class.
So they cannot understand, from the description of any given Abstract data, which
Game data it is related to and how. Nor could they understand from the description
of any given Game data, which Abstract data it was related to and how.

NOTES
1. Expenditure on design. An analysis of the relationship between expenditure on design

tools and competitiveness of Integrated Circuit companies, conducted by the Electronic
Design Automation Consortium (EDAC), showed that there was a strong link between
the investment in design and a company’s future market position. See Glossary.

2. Drafters. A profession which prepares technical drawings and plans used by produc-
tion and construction workers. These drawings are used to build everything from man-
ufactured products (e.g. toys) to structures (e.g. an offce building). See Glossary.

3. Computer Aided Design (software). Computer software used to design and simulate
physical tests of products which require expensive raw materials before these are phys-
ically manufactured, such as buildings, cars and electronic circuits.

4. Quality Control. A system that accepts or rejects products or services depending on
whether these meet all of the customer’s specifcations and requirements. See Glossary.

5. Quality Assurance. In theory, a system which ensures that a company’s processes (as
supposed to their product) will meet all of the customer’s requirements and specif-
cations. In practice, software companies just apply two Quality Controls in the latter
stages of production, known as Alpha and Beta testing, and call it Quality Assurance.
See Glossary.

6. Soak Testing. A process for testing a complete software or hardware system, to reveal
errors that only emerge under extreme conditions. See Glossary.

7. Watch your character, it becomes your destiny. Quotation from Frank Outlaw, Amer-
ican business man and retail executive.

8. Quality. The characteristic of a product which meets a customer’s needs. See Glossary.
9. Role of design. In industries such as Construction and Electronics, the role of design is

not just to describe the plan for making a product but also to analyse the interaction of
the different parts of the plan. See Glossary.

206

6 Glossary

6.1 CLASSIC SOFTWARE PRODUCTION LIFE CYCLE

A production process that follows the analysis, design, implementation, testing,
installation, maintenance and retirement of software. The process requires extensive
documentation; at least six in all. These include a description of the requirements of
the software, the preliminary software design, the User Interface, a fnal software
design, a plan for testing the software and a User manual.

Since commercial software, such as computer games, are released after being
tested, there is usually no maintenance and retirement phase. The licences that
accompany these software usually explicitly deny any warranty and do not claim
any suitability of the software for any purpose. Any maintenance done on it is at the
user’s personal cost and risk.

The software production life cycle is also called the Waterfall. It is one of the
oldest software production processes. It borrows a lot from the production processes
used in other forms of engineering. These include civil, mechanical and electrical
engineering. Many subsequent software production processes are based on it.

There is a common fallacy that the Waterfall is not adept to changes in a cus-
tomer’s requirements. The fallacy comes from the fact that the Waterfall is a linear
process i.e. no two phases of it should overlap. The misconception of this fact is that
each phase has to be completed before the next begins. This misconception is often
deliberately spread to make the Waterfall look very naïve, prior to the presentation
of a convoluted and expensive substitute.

It is true that no two phases of the Waterfall should overlap. But if it becomes
clear, from an encounter with an unexpected problem, in the current phase, that the
previous phase was incomplete, then you simply go back to the previous phase. You
keep doing this until you have to return back to the original analysis.

A software life-cycle or product life-cycle model, described by W. W. Royce in 1970,
in which development is supposed to proceed linearly through the phases of require-
ments analysis, design, implementation, testing (validation), integration and mainte-
nance. The Waterfall Model is considered old-fashioned or simplistic by proponents
of object-oriented design which often uses the spiral model instead….

Source: Waterfall. The Free On-line Dictionary of Computing
© 1993-2001, Denis Howe

Figure 3 portrays the iterative relationship between successive development phases
for this scheme. The ordering of steps is based on the following concept: that as each
step progresses and the design is further detailed, there is an iteration with the preced-
ing and succeeding steps but rarely with the more remote steps in the sequence. The
virtue of all of this is that as the design proceeds the change process is scoped down to
manageable limits. At any point in the design process, after the requirement analysis
is completed, there exists a frm and closeup, moving baseline to which to return in

DOI: 10.1201/9781003502784-6

https://doi.org/10.1201/9781003502784-6

Glossary 207

the event of unforeseen design diffculties. What we have is an effective fallback posi-
tion that tends to maximize the extent of early work that is salvageable and preserved.

…The frst rule of managing software development is ruthless enforcement of doc-
umentation requirements.

Occasionally I am called upon to review the progress of other software design
efforts. My frst step is to investigate the state of the documentation. If the documenta-
tion is in serious default my frst recommendation is simple. Replace project manage-
ment. Stop all activities not related to documentation. Bring the documentation up to
acceptable standards. Management of software is simply impossible without a very
high degree of documentation….

Why so much documentation?

1. Each designer must communicate with interfacing designers, with his man-
agement and possibly with the customer. A verbal record is too intangible
to provide an adequate basis for an interface or management decision. An
acceptable written description forces the designer to take an unequivo-
cal position and provide tangible evidence of completion. It prevents the
designer from hiding behind the – “I am 90 percent fnished” – syndrome
month after month.

2. During the early phase of software development, the documentation is the
specifcation and is the design…If the documentation does not yet exist there is
as yet no design, only people thinking and talking about the design which is of
some value, but not much.

3. The real monetary value of good documentation begins downstream in the
development process during the testing phase and continues through opera-
tions and redesign…

a) During the testing phase, with good documentation, the manager can concen-
trate personnel on the mistakes in the program. Without good documentation every
mistake, large, or small, is analysed by one man who probably made the mistake in the
frst place because he is the only man who understands the program area…

c) Following the initial operations, when system improvements are in order, good
documentation permits effective redesign, updating and retroftting in the feld. If
documentation does not exist, generally the entire existing frame work of operating
software must be junked, even for relatively modest changes…’

Source: Managing the development of Large Software Systems © 1970, Institute of
Electrical and Electronics Engineers. Dr. Winston W. Royce

6.2 SOFTWARE DESIGN

A breakdown of the software components, tools and techniques that will be used to
build and assemble software that meets a User Specifcation i.e. a customer’s require-
ments. A breakdown of the software procedures and data that will be used to build
a software module.

6.3 SOFTWARE MODULE

A small piece of software, which is a component part of a larger computer
programme. Each solves one facet of the overall problem the programme was
designed for.

208 Event-Database Architecture for Computer Games

6.4 SOFTWARE DATA

Information suitable for computer processing.

6.4.1 GAME DATA

General information which is shared between software modules e.g. the name of
items in the Game World, commonly used text, 2D images, 3D models sound and
so on.

6.4.2 ABSTRACT DATA

Special information which is designed to be only used by a single software mod-
ule. In the Computer Games industry, because often there is no complete game
design and hence no complete data design, there is a lack of a well-defned data.
So although some of the data is called and treated as if it were Abstract Data,
almost all data is a form of Game Data which is shared by multiple software
modules.

6.5 SOFTWARE LIBRARY

A collection of computer programmes, or software modules, which perform a com-
monly repeated task on computer hardware e.g. reading data from, and writing to,
computer fles, rendering graphics, playing sounds.

6.6 GAME DESIGN

A term sometimes used to refer to the User Specifcation of software, in the Computer
Games industry. It is a description of the goal of a game, the different stages, the pro-
gression and the User Interface through these stages.

6.7 INTERFACE

A common boundary.

6.7.1 USER INTERFACE

The set of components (e.g. images, messages, commands or menu options) that
allows a user to interact with software.

6.7.2 PROGRAMMING INTERFACE

The set of components (e.g. procedures or data) that allows one software module to
interact with another.

All software that a user can interact with has a User Interface, and at no point,
while it is being used, does it not have one. Whether it is displaying 3D or 2D images,

Glossary 209

or plain text, these are all part of the User Interface. Even a photo-realistic 3D dis-
play of the Game World is still part of the User Interface. It is not real. It is merely a
representation of the data within the computer system, which you can interact with,
whose function is to inform the users, not to fool them.

The aspects of a computer system or program which can be seen (or heard or other-
wise perceived) by the human user, and the commands and mechanisms the user uses
to control its operation and input data.

A graphical user interface emphasises the use of pictures for output and a point-
ing device such as a mouse for input and control whereas a command line interface
requires the user to type textual commands and input at a keyboard and produces a
single stream of text as output.

Source: User Interface. The Free On-line Dictionary of Computing
© 1993-2001, Denis Howe

6.8 TECHNICAL DESIGN

A term sometimes used to refer to a software design, in the Computer Games indus-
try. It is a description of the software modules, data, tools and techniques that will be
used to implement a game design.

6.9 GAME MODULE

A software module which is used to implement unique aspects of a game.

6.10 GAME ENGINE

A set of software modules (or library) which were designed to be reused to make
many aspects of different games. Or that is what is meant to happen in theory. In
practice, the library originates from a game of a certain genre. And it is only suitable
for making other games that ft into that genre of the original game.

6.11 USER MANUAL

An instruction booklet, for software users, which explains how to solve a problem
using the software. In computer games, this includes a description of the problem (i.e.
the background and goal of the game) and a description of how to use the Interface
of the game to solve the problem.

6.12 PRE-PRODUCTION, PRODUCTION AND QA

The differences between the names of the phases, of the production of Computer
Games and other software, stem from the crisis of identity which the Computer
Games industry suffers from. The industry has a hard time deciding whether it
is part of the Film industry or the Software industry. While some in the industry

210 Event-Database Architecture for Computer Games

liked to think of themselves as Film Studios, others liked to think of themselves as
Software Houses. This confict has subsequently been refected in the names of the
phases of production. The name of the frst two phases comes from the affnity with
the Film industry, which uses the same names to refer to the initial phases of flm
production. While the name of the last phase, short for Quality Assurance, comes
from the affnity with the Software industry, which uses the same name to refer to
the fnal phase of software production.

Along with the frst two phases, there is a fourth phase in the Computer Games
industry known as Post-production. This occurs after the software has been released
and has nothing directly to do with its production. Its effect is only posthumous and
it is sometimes omitted. The name of this phase too comes from the fnal phase of
flm production.

Regardless of the size of the team, scope of the game, the budget, or anything else,
a basic framework exists for the overall production process. The process can be
broken down into four broad phases: pre-production, production, testing, and
post-production….

Pre-production is the frst phase in the production cycle and is critical to defn-
ing what the game is, how long it will take to make, how many people are needed,
and how much everything will cost. Pre-production can last anywhere from one
week to a year or more, depending on how much time you have to complete the
game…

The production phase is when the team can actually begin producing assets and
code for the game. In most cases, the line between pre-production and production is
fuzzy, as you will be able to start production on some features while some features will
still be in pre-production…

Testing is a critical phase in game development. This is when the game gets checked
to ensure that everything works correctly and that there are no crash bugs. Testing is
ongoing during the production process, as the Quality Assurance (QA) department
will check milestone builds, new functionality, and new assets as they become avail-
able in the game…

After the game is code released and approved for manufacturing, the game
development process needs to be wrapped up before it is officially completed.
Many times, this step is forgotten or ignored, which is unfortunate…The post-
production phase consists of two things: learning from experience and archiving
the plan.

Source: Game Production Handbook © 2006,
Charles River Media. Heather Chandler

6.13 SOFTWARE DEVELOPER

A person or company that produces software.

6.14 SOFTWARE ENGINEERING

A systematic, disciplined approach to software production. It was devised to cope
with large projects which no one individual could undertake to deliver in a timely,
secure fashion.

Glossary 211

This approach may begin with a prototype. A prototype is the frst product of the
software production process. All other products of that process have the same quali-
ties. So the prototype can be used to assess the feasibility of the process.

Software Engineering: (1) The application of a systematic, disciplined, quantifable
approach to the development, operation, and maintenance of software; that is, the
application of engineering to software. (2) The study of approaches in (1).

Source: IEEE Standards Collection: Software Engineering, IEEE Standard
610.12-1990 © 1993, Institute of Electrical and Electronics Engineers

Software engineering is the establishment and use of sound engineering principles in
order to obtain economically software that is reliable and works effciently on real
machines.

Source: Software Engineering: A Report on a Conference Sponsored by the
NATO Science Committee © 1969, North Atlantic Treaty Organisation.

Naur, P. and B. Randall (eds.)

6.15 GAME-EDITORS

One or more tools that allow the elements of a game to be edited. These elements may
either be menus, locations, characters or other items that appear in the Game World.

For example, the game-editor may allow you to edit the number of characters roaming
around or other items lying around in one location of the game. Or the game-editor may
allow you to edit the position of these items in that location. Or these may allow you to
edit the shape of that location. Or these may allow you to edit some of the properties of
a character or another item in that location. This includes the colour, size, appearance,
animation, sounds or pattern of behaviour of that character or item.

Originally, game-editors were only produced at the end of a software produc-
tion process, sometimes after a game had been released. These were meant to give
the end-users or players the ability to either add new features to the Game World or
extend existing ones. But later, these editors began to appear at the beginning of the
production process. So that these could be used by Software Developers to edit the
Game World when the game design changed.

However, unlike the original editors, these later ones had the additional prob-
lem of trying to edit a game, with an incomplete game design, that kept chang-
ing. If there were anything more difficult than trying to produce a game, with an
incomplete game design, it would be trying to produce the software to edit one.

A popular example of one of these modern editors is the Unity Editor, which
comes with its own game-engine called the Unity Engine. There are at least fve
popular points used to market the Unity Editor, and its advantages, to the production
of computer games. These are that it enables you to

1. build impressive looking 2D or 3D games on your own
2. rapidly build a small section of a game, or ‘prototype’ in the language of

the Computer Games Industry, which can be used in its feasibility study or
to market it

212 Event-Database Architecture for Computer Games

3. change properties, appearance and physics of items in the game, while play-
ing the game, which makes the project seem very fexible

4. extend features of the Editor by writing your own tools with its program-
ming languages, or purchasing software from a large group of third parties,
which again makes the project seem fexible

5. build games for different or future Operating Systems or Computer
Hardware, or ‘platforms’ in the language of the Computer Games Industry,
which makes the project open to more or new lucrative markets

But all of these advantages do not hold up when examined from the perspective of
a formal defnition of Software Engineering (see the defnition of software engineer-
ing and prototype in the Glossary).

Briefy, Software Engineering is a systematic approach to building software
which requires a lot of people, with different skills, to collaborate. It is a systematic
process developed to ensure the success of large projects. The frst product, from
the beginning to the end of this process, is called a prototype, which may be used to
assess the feasibility of that process.

From this defnition, it is clear that with respect to the Unity Editor,

1. the Unity Editor tries to bypass any need for collaboration and provides a
single tool that allows a single person to build a game alone, so no matter
how impressive the 2D or 3D graphics of the game look, if you use the
Editor for a large project, that project will fail, according to the require-
ments of Software Engineering

2. the prototype you produce with the Unity Editor is not the frst product of
a production process, it does not come out of running through the process
from the beginning to the end, but it is a product of ad hoc experimentation
at the beginning

3. editing the properties of a game, while playing it, is an ad hoc process and
not a systematic one required by Software Engineering

4. there is no systematic way with the Unity Editor to describe some prob-
lem with a Software Design, Architecture or tool used in a production
process and find a solution for it either by writing your own extension
to the Editor through its programming languages or buying third-party
tools

5. the Unity Editor and Unity Engine are not scalable

In addition to (2), it is worth noting the following about the prototype produced
with the Unity Editor:

1. the prototype does not have the same qualities as the rest of the products of
the production process but is merely a small section of the Game World or
‘Unity Scene’ in the language of the Unity Editor

2. the prototype will probably not even be in the fnal product
3. the prototype cannot be used to assess the feasibility of the production

process

Glossary 213

In addition to (3), it is worth noting the following about editing a game while play-
ing it in the Unity Editor:

1. the changes depend on incidental causes (i.e. observations that happen to
occur while playing the game)

2. the changes depend on incidental effects (i.e. adjusting the properties of
items or game modules, in the Game World through a process of trial and
error to correct problems or unwanted behaviour in the observations)

In addition to (4), it is worth noting the following about what the Unity Editor
provides you with:

1. a tool (i.e. the Unity Asset Store) which allows you to search for third-party
tools that can solve a problem

2. searching the Asset Store depends on Keywords for different areas of the
game (e.g. ‘3D Models’, ‘Animations’, ‘Audio’, ‘scripting’ etc.) which are
just too vague for a systematic approach and requires a process of trial and
error to fnd the right tool

In addition to (5), it is worth noting the following about the Unity Editor and
Unity Engine:

1. there is no systematic approach to transferring a game from one ‘platform’
to another

2. the Software Developer has to be aware of which ‘platform’ the Unity Engine
is working on and select the right features to use, when they write the software

3. the Unity Engine does not have a paradigm or model or way of working,
which works across all ‘platforms’ which is required for it to be scalable

4. there is no systematic approach for even transferring the game from work-
ing within the Unity Editor to working without the Editor, and there are
features which the Developer has to be aware will only work in the Editor
and cannot be used to build the fnal product without the Editor

5. the Unity Editor and Unity Engine were both produced by an ad hoc
approach (i.e. a Software Evolution Process) and not by a systematic
approach (i.e. Software Engineering) which would be required to produce
scalable software, as a result amongst other things the documentation of the
Editor is poor, features are continuously being added or removed,

6. the Unity Editor is currently (in 2015) only available for 2 ‘platforms’ (i.e.
Microsoft Windows and MAC OS X)

7. the Unity Engine is available for over 20 ‘platforms’
8. if the Developers of the Unity Editor and Unity Engine could produce scal-

able software, why is it that the number of ‘platforms’ for the Editor and
Engine differ so greatly?

9. if the Developers of the Unity Editor and Unity Engine could not produce
scalable software themselves, then how can they provide others with tools
that do produce scalable software?

214 Event-Database Architecture for Computer Games

Nevertheless, the Unity Editor is very popular, and it has many admirers. Some
would point to this fact, namely there being many articles and forums on the Internet,
some from the Developers of the Editor and Unity Engine, and others from fans who
give advice. And you can search for advice on how to transfer a game from one
‘platform’ to another. And this search is part of the paradigm or model or way of
working of the Unity Editor. Hence, the Unity Editor and Unity Engine have a single
paradigm for all ‘platforms’ and therefore are scalable.

This searching process may or may not be part of the paradigm of the Unity
Editor. But, nevertheless, this search process is ad hoc. And in no way shape or form
can an ad hoc process be described as scalable, let alone Software Engineering.

Unity is a fexible and powerful development platform for creating multiplatform 3D
and 2D games and interactive experiences. It’s a complete ecosystem for anyone who
aims to build a business on creating high-end content and connecting to their most
loyal and enthusiastic players and customers.

Source: The best development platform for creating games
(c) 2015. Unity Technologies

Most of Unity’s API and project structure is identical for all supported platforms and
in some cases a project can simply be rebuilt to run on different devices. However,
fundamental differences in the hardware and deployment methods mean that some
parts of a project may not port between platforms without change. Below are details
of some common cross-platform issues and suggestions for solving them.

Source: Porting a Project Between Platforms (c) 2015. Unity Technologies

6.16 PLATFORM

A marketing term for a computer hardware or Operating System or third-party
game-engine that a computer game can be built and sold on.

6.17 SOFTWARE EVOLUTION PROCESS

A name given to any of a large set of ad hoc, non-linear, software production pro-
cesses, that are meant to evolve a piece of software to meet a software user’s require-
ments. These are based on rapid feedback from the user.

The concept of a Software Evolution Process was devised by Meir ‘Manny’
Lehman, while he was working for the International Business Machines Corporation
(IBM). He was investigating the level of productivity occurring on the OS/360
Operating System for mainframe computers.

He used the term to describe a phenomenon that occurred to software which was
continuously being adapted to meet a changing market. He noticed that these soft-
ware all rapidly became too complex, and the production process grounded to a halt.
The software then had to be dramatically revised or replaced by something new. His
contemporaries at IBM, such as Fredrick P. Brooks, who looked at his study, agreed
with him. Fredrick P. Brooks went on to write The Mythical Man Month, document-
ing the phenomenon, which was originally published back in 1975. Lehman believed

Glossary 215

there was a theory (or set of laws) which explained this phenomenon. And that if you
could understand this theory, you could extend or prevent these terminal processes.
He called it the theory of Software Evolution.

Over the years, the Software Evolution Process has been re-branded and reintro-
duced into the Software industry, several times, as a new methodical technique. But
these techniques have neither been new nor methodical. Two such examples of this
re-branding and reintroduction have come in the form of two methodologies known
as Extreme Programming and SCRUM.

Both are a subset of a methodology known as Agile Software Development
Management. And Agile Software Development Management is a subject of an aca-
demic discipline known as Project Management.

One of the central premises of Project Management is that the development of a
plan, for any project (including software production), is an iterative process. That is,
the plan will change as time goes by, and you learn more and more about that project.
Another central premise is that the risk associated with a project should be kept to
a minimum, by breaking it down into smaller tasks. And by accounting for the cost
and time to complete each of these tasks.

The effect of the frst premise, in software production, is that Project Management
creates iterative software production processes, with little or no advanced analy-
sis. The effect of the second premise is that Project Management creates non-linear
software production processes. Since by overlapping phases of the classic software
production life cycle, the time at least, if not the cost of a project, can be kept to a
minimum. And hence the risk can be kept to a minimum.

Therefore, both Extreme Programming and SCRUM bears these two characteris-
tics! These processes are both iterative and non-linear. These two characteristics are
also the defning characteristics of a Software Evolution Process.

SCRUM is the most common form of Agile Development used in the Computer
Games industry. Since it has fewer rules than Extreme Programming. But both
SCRUM and Extreme Programming share a lot of terminology which makes it
sound as if these methodologies originated from software engineering even though
these originated from Project Management e.g.

‘Test-Driven Development’,
‘Refactoring’,
‘Continuous Integration’,
‘Coding Standard’,
‘User stories’,
‘Pair programming’.

None of these terms have anything to do with the academic discipline of Software
Engineering. SCRUM breaks down the production process into short phases known as
‘Sprints’. Each ‘Sprint’ in theory only lasts two weeks. But in practice, some Software
Developers make this last up to 4 weeks or more. It begins with a set of targets, some-
times called ‘deliverables’. And attached to each ‘deliverable’ is a total time estimated to
complete it. This time is reduced each day as progress is made. And the total time left for
all ‘deliverables’ is plotted on a chart known as a ‘Regression Chart’. The chart plots time

216 Event-Database Architecture for Computer Games

spent on the ‘Sprint’ on the X-axis, against time left for all ‘deliverables’ on the Y-axis.
And in theory, it should show a straight line, slopping down, from some arbitrary level,
to 0, from left to right, as the end of the ‘Sprint’ approaches.

But in practice, the line is never straight, nor does it reach 0. The estimates to
complete the ‘deliverables’ are nothing more than educated guesses. And this relies
on an iterative process to correct. SCRUM also allows the phases of the classic
software production cycle to be overlapped, as different groups work on different
‘deliverables’ at the same time. SCRUM has no provision for even prioritising ‘deliv-
erables’ and it places no value on documentation.

Therefore, SCRUM too bears the characteristics of a Software Evolution Process.
It is both an iterative process and non-linear and places no value on written designs.

Less and less effort is spent on fxing original design faws; more and more is spent on
fxing faws introduced by earlier fxes…As time passes, the system becomes less and
less well-ordered. Sooner or later the fxing ceases to gain any ground. Each forward
step is matched by a backward one. Although in principle usable forever, the system
has worn out as a base for progress.

Source: The Mythical Man Month: Essays on Software Engineering, 20th
Anniversary Edition © 1995, Addison-Wesley. Frederick P. Brooks

2 The Laws
2.1 I - Continuing Change

An E-type program that is used must be continually adapted else it becomes
progressively less satisfactory….
2.2 II - Increasing Complexity:

As a program is evolved its complexity increases unless work is done to main-
tain or reduce it…
2.3 III - Self Regulation

The program evolution process is self-regulating with close to normal distribu-
tion of measures of product and process attributes…
2.4 IV - Conservation of Organisational Stability (invariant work rate)

The average effective global activity rate on an evolving system is invariant over
the product life time…
2.5 V - Conservation of Familiarity

During the active life of an evolving program, the content of successive releases
is statistically invariant…
2.6 VI - Continuing Growth

Functional content of a program must be continually increased to maintain user
satisfaction over its lifetime…
2.7 VII - Declining Quality

E-type programs will be perceived as of declining quality unless rigorously
maintained and adapted to a changing operational environment…
2.8 VIII - Feedback System

E-type Programming Processes constitute Multi-loop, Multi-level Feedback
systems and must be treated as such to be successfully modifed or improved…

Source: Laws of Software Evolution Revisited © 1997, M. M. Lehman

The stated, accepted philosophy for systems development is that the development pro-
cess is a well understood approach that can be planned, estimated, and successfully

Glossary 217

completed. This has proven incorrect in practice. SCRUM assumes that the systems
development process is an unpredictable, complicated process that can only be
roughly described as an overall progression. SCRUM defnes the systems develop-
ment process as a loose set of activities that combines known, workable tools and
techniques with the best that a development team can devise to build systems. Since
these activities are loose, controls to manage the process and inherent risk are used.
SCRUM is an enhancement of the commonly used iterative/incremental object-
oriented development cycle.

Source: The Scrum Development Process © 2024. Scrum.org

Extreme Programming (XP) is a software engineering methodology, the most promi-
nent of several agile software development methodologies. Like other agile method-
ologies, Extreme Programming differs from traditional methodologies primarily in
placing a higher value on adaptability than on predictability….Extreme Programming
was created by Kent Beck, Ward Cunningham, and Ron Jeffries during their work on
the Chrysler Comprehensive Compensation System (C3) payroll project. Kent Beck
became the C3 project leader in March 1996 and began to refne the development
methodology used on the project. Kent Beck wrote a book on the methodology, and in
October 1999, Extreme Programming Explained was published. Chrysler cancelled
the essentially unsuccessful C3 project in February 2000, but the methodology had
caught on in the software engineering feld….

Source: Extreme Programming © 2007. Wikipedia. The Free Encyclopedia

[A client came in with the idea of the game for them to create for the military and large
companies. And made it clear that they would be using a SCRUM PRODUCTION
PROCESS, with SPRINTS of 2 weeks to develop it.]

Game Producer #1: “Yeah! That is the only danger [in the project] that I can see
out of the whole thing”

[making impromptu speculation about the feasibility of the client’s project.]
Client #1: “…raise information security awareness …increase the understanding

of the security team. …we would want a high level design, then a 2 week Sprint …
within the frst 2 weeks we have agreed a high-level design. This is not a deliverable
you will have to give us…”

Source: A typical Diary of a Software Evolution Process of Slippery Games Inc.
Anonymous. February 2014

6.18 PRACTICAL APPLICATION (OF BIOLOGICAL EVOLUTION)

Advocates of the application of the theory of Biological Evolution, to software
production, can be found in many quarters of the Software industry. Even those
who develop software, which helps other industries construct intricate designs, and
analyse these before production, believe that a less analytical, more evolutionary
approach, suits the Software industry. These include John Walker who, together with
other staff at Autodesk, developed one of the most popular Computer-Aided Design
tools, AutoCAD. This tool has been used by other industries, to comprehensively
design and analyse products prior to production. A derivative of this tool, 3DS Studio
MAX, also became the most popular tool used by Game Artists in the Computer
Games industry.

https://Scrum.org

218 Event-Database Architecture for Computer Games

Nevertheless, by adopting the theory of Biological Evolution, its advocates neglect
or deny any ethical dimension to a software production process. They deny any ethi-
cal responsibility, on the part of the Software Developer, to produce their best effort.
They deny any responsibility for the production process to begin and end with the
needs of the customers.

Instead, the theory of Biological Evolution requires a Software Developer to only
produce makeshift products. Each attempt has to get out to the market as quickly as
possible, to fnd out which way the market is heading. It does not have to meet the
customers as far along that path as possible; merely fnd out where that path is lead-
ing. And all the Software Developer has to do is keep promising that the next version
will go further down that path.

But, of course, the next version will be another makeshift product. If the theory
of Biological Evolution suggests that a Developer may forego the analysis of the very
frst version of the product, and just let the natural selection take its course, why
would the Developer perform any analysis for any subsequent versions? So the cus-
tomers will continue to wait, while the Software Developer continues to get money
for their makeshift efforts.

In this unethical production process, the needs of the customers are secondary to the
survival of the Software Developer. The process does not begin with the needs of the
customers. Nor does it end with them. Instead, it begins with the need for the Software
Developer to quickly secure some emerging consumer market. And, theoretically, it
never ends as the product can keep mutating, assimilating more and more features.

In practice, however, the product quickly becomes too unwieldy for the Software
Developer. And other competitors, with relatively newer products, react faster to the
market than the Developer. So the only way open for the Developer to survive is by
assimilating these competitors, their products or features of their products. This, in
turn, raises another set of ethical issues, which those who advocate the application
of the theory of Biological Evolution do not even recognise. Should large Software
Developers with unwieldy legacy products be allowed to consume smaller Software
Developers with new innovative products? What happens to competitiveness and
innovation in the market if you allow this?

At this point, it becomes self-evident which species survival depends on the appli-
cation of the theory, to software production. The species is not some set of products,
of a Software Developer, which share some common ancestry. Nor is it some set
of customers, of the Developer, who share some common need. It is the Software
Developers themselves.

markets really work, how technologies emerge and mature, and how actual products
are developed in the real world. In the early days of Autodesk, I didn’t even try to
guess which product would succeed–I knew I wouldn’t have a hope of making such a
prediction accurately. But I was pretty confdent we could bat .200–that at least one
out of fve products we chose would succeed in the market. Then, and only then, would
we focus our efforts upon the winner.

Think of it as evolution in action. We, as product developers, are creating new
species, almost as blindly as the shuffing of genes, with the market—our customers–
performing the winnowing process of selection. As in biology, there’s no way to know

I use the word “evolution’’ a lot because I believe it’s central to understanding how

Glossary 219

how well something will work without trying it. Yet once it gets out there, you learn
pretty quickly whether it was a good idea or just plain dumb….

That’s why it’s ever so important to get a product into the feld early and to have
a rapid and responsive development and upgrade program. The frst product in a cat-
egory benefts from the feedback of customers and can quickly begin to converge
toward meeting their requirements, often growing in directions not remotely antici-
pated in the original design.

…it explains why large, mature products tend to be messy and complicated, because
they have accreted, over the years, a large number of features, each requested by and valu-
able to, a set of customers…. Only when a customer ceases to believe that the product he
already owns will meet his needs in the future does he goes shopping for a replacement.

All this seems so obvious to me that I rarely bother trying to explain it, and yet the
process by which products are proposed and developed in many organisations, includ-
ing Autodesk, seems diametrically opposed to this evolutionary philosophy. Instead,
we do market research (asking people what they think about something that does not
exist) in order to make a detailed design, forecast market acceptance in advance, then
build the product all-up to be perfect from the start.

Source: The Autodesk File, Bits of History, Words of Experience
© 1994, John Walker

6.19 OPEN-ENDED PROCESS (OF BIOLOGICAL EVOLUTION)

The extinction of a species is not the end-point or goal of Biological Evolution. The
goal is survival; survival of the fttest.

According to the theory of Biological Evolution, when a species evolves into many
subspecies, it is in order to survive. If one of the subspecies becomes extinct, that does
not mean that the process of Biological Evolution has ended. The other subspecies, and
the parent species, survive and continue to evolve. Even within the limited perspective
of the subspecies which became extinct, there would have been no way of predicting
when that species would reach that point. Nor would there have been a requirement for
the species to reach that point. Thus, the process would still be open-ended.

6.20 ART PIPELINE

A manual, distinct sub-process of the production of Computer Games, for generating
artwork. The Pipeline is created by and for Game Artists. And it usually begins with
a separate document, sometimes known as a media design, if not the game design.
This document describes the sub-process, its objectives, the techniques, tools and
other resources that would be used to achieve these objectives.

‘Texture Artist
Founded in 1993 this Ontario studio proudly ranks as one of the world’s top devel-

opment studios in the interactive entertainment industry…
Candidates Will

• Create photo-realistic textures from scratch as well as photo source
materials.

• Use creative and effcient UV mapping to apply textures to 3D geometry.

220 Event-Database Architecture for Computer Games

• Create normal maps from high-poly geometry.
• Work within, and optimize for, real-time memory and shader constraints.
• Use proprietary tools and work within an established asset development

pipeline.

Candidates Must Have:

• Extensive environmental texturing experience.
• Experience with next-gen art pipelines and production preferred.’

Source: Game artist and animator jobs © 2007. Datascope Recruitment

The art pipeline is a term used to describe the entire process of creating and
implementing art for a particular project, most commonly associated with the
creative process for developing video games. In an era of high profle video games,
wherein the creative energy of the teams and the budgets for projects surpass even
some Hollywood blockbusters, graphics are ever-improving and an increasingly
important selling point. Video Game developers employ extensive teams of artists
to carry a project’s artistic goals through from the conceptual stage to the fnal
release. A fully realized game asset, whether it is a character, background, build-
ing, object, or animation, is created in a deliberate process with different artists
working on and contributing separate aspects in a step by step process to the fnal
product.

Source: Art Pipeline © 2007. Wikipedia. The Free Encyclopedia

6.21 BUILD PIPELINE

An automated, distinct sub-process of the production of Computer Games, for peri-
odically building and testing the game to ensure no errors have been introduced into
the building process, due to rapid changes.

There may be between 80 and 100 changes going into the game a day, 3 and 4
changes an hour or 1 change every 15 minutes, for a project with about 60 staff.

The system reports any errors through e-mails to potential authors who it sus-
pects made changes that produced the errors. But the system does not really know
who or what produced the errors. Since the system deals in aggregates. The sys-
tem reports the aggregate number of errors that were produced, the aggregate
number of Software Users who submitted changes and the aggregate number of
changes.

For example, the system will tell you that at 12.00 a.m. today, there were 12
errors reported, after 20 Users submitted changes and there were 40 changes. Now
the number of fles involved in these 40 changes could be anywhere from 40 fles to
100 fles. And the number of lines in these fles could be anywhere from 40 lines to
10,000 lines.

Since the system cannot identify the source of the errors, it just sends an e-mail
to all those it suspects caused the errors. The suspects are usually the last set of
Software Users who submitted fles to a Software Repository which the system used
to build the latest version of the game. The automated system which does this is
sometimes called Continuous Integration or CI.

Glossary 221

The system may also automate the deployment or release of the game to the
Software User i.e. players, including

1. announcing the latest version of the game through some Web Server
2. testing the game before release
3. creating custom versions of the game for different Operation Systems or

computer hardware or ‘platforms’ before release to those ‘platforms’
4. creating special software to control the uninstalling of the old version of the

game and installing the latest version.

The systems which automate the deployment or release of the game are called
Continuous Deployment or CD.

Many Software Developers confuse CI and Continuous Deployment (CD) sys-
tems. But most Software Developers only have a CI system. Since they typically
work for third parties who control when and how the game is announced. Some
Software Developers who work for themselves or have completed the production of
a game for a third party do have a Continuous Deployment (CD) system.

The Game Programmer responsible for these CI or CD systems is called a Build
Engineer. The Build Engineer often gets scapegoated for the errors the CI or CD
systems reveal. Due to the rapid changes going into the game, from several sub-
processes running in parallel in the Software Evolution Process, no one can keep up
with the changes. Apart from the CI or CD systems.

These systems are often the frst to put all of these changes together and also the
frst to reveal the errors and Bugs (euphemistically sometimes called ‘build issues’)
which arise when you do so. The Build Engineer is in theory only responsible for the
‘build stability’ and chasing up the Software Users who made changes that caused
the errors. But in practice this requires the Build Engineer to investigate these errors
to fnd out who is responsible. And that investigation is hampered by the inscruta-
bility of the Software Evolution Process. Nevertheless the failure to scrutinise the
process and correctly identify who is responsible for errors ends up being attributed
to a faw in the CI or CD system or the Build Engineer. When it is in fact a faw in
the Software Evolution Process.

BUILD ENGINEER

… looking for a talented and passionate Build Engineer to join our team… In this role,
you will be responsible for the development, maintenance and optimisation of all our
build pipelines….

RESPONSIBILITIES

• Developing, maintaining, and optimising our multi-platform build pipelines.
• Managing and communicating the fow of changes in source control across

multiple environments.
• Working with developers to resolve and validate merge conficts across mul-

tiple environments.
• Communicating and coordinating releases (lockdown approvals, patches,

etc.) with colleagues of various disciplines.

222 Event-Database Architecture for Computer Games

• Identify opportunities to improve and automate our processes.
• ….
• Working with QA to help triage build and runtime issues and their potential

solutions.
• ….

EXPERIENCE GUIDELINES

• Passionate about playing and building video games!
• Practical experience of version control systems (ideally Perforce and Git).
• Practical experience in constructing and managing build pipelines for mul-

tiple environments and platforms.
• …
• Profciency writing and maintaining build scripts.
• Familiarity with CI/CD concepts and tools such as TeamCity.
• ….
• Attention to detail and interest in catching build issues.
• A proactive attitude toward improving the build/release processes…’

Source: A typical Build Engineer Job Advert from Slippery Games
Inc. Anonymous. 2024

6.22 EVOLVE SOFTWARE WITHOUT DEGENERATING

M. M. Lehman, who gave the Software Evolution Process its name, has always found
the process degenerative and denied any link between it and generative biological
evolution.

The reason he started examining the process in the frst place was precisely to
discover what factors determined how it degenerated. However, to date, he has not
formulated a fnal theory to explain the phenomenon. Although many are quick to
link his theory with the theory of Biological Evolution, by Charles Darwin, he is
not. This is the fundamental difference in how Lehman uses the phrase Software
Evolution Process, and its popular interpretation. Lehman uses it as a basis for
formulating a theory. As part of this formulation, he wrote 8 laws to explain
Software Evolution.

Others have subsequently confated Software Evolution with the theory of Biological
Evolution. They assumed to have an understanding of the laws of Software Evolution,
from their understanding of the theory of Biological Evolution. But they have not exam-
ined these laws carefully. Thus, the laws of Software Evolution, at least their understand-
ing of these laws, have assumed the same level of credibility as the theory of Biological
Evolution. They have assumed that these laws had some basis in nature. And as such,
they fnd it incredulous to accept a criticism of Software Evolution, as distinct from a
criticism of the theory of Biological Evolution. They have assumed that these laws could
not be changed, like the laws of nature. And as such, a production process which did not
follow the laws of Software Evolution, from the beginning, would fail.

But, frstly, Lehman himself is changing these laws and has not fnalised his
theory. Secondly, the origin of Software Evolution was a study of software in its

Glossary 223

operational and maintenance phase, of the software production life cycle. It did not
come from an examination of the entire software production life cycle, from the
beginning.

For Lehman, the place to look is within the software development process itself, a
system Lehman views as feedback-driven and biased toward increasing complexity.
Figure out how to control the various feedback loops – i.e. market demand, internal
debugging and individual developer whim – and you can stave off crippling over-
complexity for longer periods of time. What’s more, you might even get a sense of the
underlying dynamics driving the system….

…At a time when lay authors and fellow researchers feel comfortable invoking the
name of Charles Darwin when discussing software technology, Lehman holds back.
“The gap between biological evolution and artifcial systems evolution is just too
enormous to expect to link the two,” he says…’

Source: A unifed theory of software evolution © 2003, Salon.com. Sam Williams

6.23 FEEDBACK FROM THE SOFTWARE USERS

Virtually all commercial software licences exclude the software users from the pro-
duction process.

In theory, although the laws of Software Evolution require feedback from the
software users, the users have not been involved in the Software Evolution Process,
as practised commercially. The maintenance of commercial software (i.e. software
not used in-house by a company) does not offcially occur. Virtually all commercial
software licences explicitly deny any warranty and do not claim any suitability of
the software for any purpose. Any maintenance is done at the user’s personal cost
and risk.

These software licences, including those for Computer Games, exclude the
end-users from the production process. This runs contrary to the laws of Software
Evolution that require, in theory, the production process to be based on feedback
mechanisms. In practice, none of the mechanisms in the Software Evolution Process
have anything directly to do with the end users. Except, that is, the infuence of those
professionals involved in the process, who claim to be the users’ proxy.

Even if the users were involved in the process, their ability to provide feedback
would be muted. In theory, each iteration of the Software Evolution Process should
be progressive, based on information fed back by the software users. That is each
step should be making the software more robust and bringing it closer towards the
fnal product. In practice, the negligence with respect to any designs or plans, which
marks the beginning of the Software Evolution Process, carries on throughout the
rest of it. So the components of the software which were meant to produce informa-
tion, by for example displaying errors or messages which the software users could
understand, would also be neglected. And no useful information would be fed back
into the process by the users.

Hence, each step of the process, in practice, would be blind. It could just as likely
be regressive, making the software less robust and moving it further away from the
fnal product, as being progressive. Indeed, this alternation between regression and

https://Salon.com

224 Event-Database Architecture for Computer Games

progression would be refected by the names given to the various versions of the soft-
ware that appear during the process. The regressive versions would sometimes be
referred to as unstable or development versions. Whereas the progressive ones would
be known as stable versions. In the end, the regressions occur more often in practice,
than the progressions, inevitably bringing the Software Evolution Process to a halt.

The software industry is not very well known for its warrantees, but is much more
famous for its legal disclaimers absolving software frms for any and all liability for
its products. One such unfortunate and sweeping disclaimer follows:

Cosmotronic Software Unlimited Inc. does not warrant the functions contained in
the program will meet your requirements or that the operation of the program will be
uninterrupted or error-free.

However, Cosmotronic Software Unlimited Inc. warrants the diskette(s) on which
the program is furnished to be of black color and square shape under normal use for a
period of ninety (90) days from the date of purchase

Note: In no event will Cosmotronic Software Unlimited Inc. or its distributors and
their dealers be liable to you for any damages, including any lost proft, lost savings,
lost patience or other incidental or consequential damage.

We don’t claim Interactive EasyFlow is good for anything - if you think it is, great,
but it’s up to you to decide. If Interactive EasyFlow doesn’t work: tough. If you lose
a million because Interactive EasyFlow messes up, it’s you that’s out of the million,
not us. If you don’t like this disclaimer: tough. We reserve the right to do the absolute
minimum provided by law, up to and including nothing.

This is basically the same disclaimer that comes with all software packages, but
ours is in plain English and theirs is in legalese.

We didn’t really want to include a disclaimer at all, but our lawyers insisted. We
tried to ignore them, but they threatened us with the shark attack at which point we
relented.45

Another extraordinary aspect of software marketing is the fact that the user gener-
ally pays for software updates. In other words, even if the product is faulty or needs
amendment, the user pays the software supplier to provide more correct versions.

[Forester]

Source: Ethics in Military and Civilian Software Development
© 1999, Sam Nitzberg

6.24 GAME PRODUCER

An employee of a games company in charge of the overall production of a game,
from getting its fnancing, through its analysis, design, implementation, and testing,
to its release.

6.25 GAME DESIGNER

An employee of a games company responsible for game designs.

6.26 GAME TESTER

An employee of a games company who tests the software at the end of its production.

Glossary 225

6.27 GAME PROGRAMMER

An employee of a games company who writes the software for games.

6.28 GAME ARTIST

An employee of a games company who makes 3D models, 2D images and anima-
tions used in a game.

6.29 SOUND DESIGNER

An employee of a games company who creates and records the sound and music
played in a game.

6.30 POST MORTEM MEETING

A meeting conducted at the end of a software production process, by the staff
involved, to retrospectively examine the pros and cons. And to decide the lessons
to be learnt from the experience. The meeting comes from the academic study of
Project Management, not software engineering.

What Is a Post-Mortem Meeting?
A post-mortem meeting is a formal discussion that occurs at the end of a project.

In the meeting, the project team discusses what went right and wrong and uses that
information to make process improvements for future projects

Source: How to run a Post-mortem meeting (c) 2024. Smartsheet Inc.

Please add any comments related to the working with other teams here:
“You are awesome!!”
Publishing reshuffling the priorities of bugs to suit their needs is unhelpful i.e.

“They make their personal issues top priority so you end up fixing a wrong ‘cuddle a
teddy bear’ animation, rather than game breakers.”

Design should be more assertive and not allow Publishing and execs to change
designs.

“[Last minute changes were reasonable…] if they weren’t camouflaged as a fea-
ture request.”

“xbox save system. This was a last minute bug request, which actually turned out
to be a whole rework of it.”

“…kudos to our compliance teams ([Redacted] and others). They have been very
helpful in answering questions.”

R—– Tech sending bugs straight back, requesting that we verify the bugs are actu-
ally for them, when that should really be their job.

“Everyone working on [Redacted] is generally quite nice so no complaints here!”
“Being part of [Redacted]Systems I sometimes find myself not being informed of

being part of discussions about features directly involving our systems.”
“Sometimes g—tech don’t like us sending things their way and we have to fix their

bugs.”
“Members from other teams who chipped in in the run up to [Redacted] were

spot on.”

226 Event-Database Architecture for Computer Games

“Production have been spot on in almost all interactions.”
“Additional design or dev bugs coming in from publishing are sometimes really

poorly scoped or have insuffcient information.”
“More feshed out, more timely designs for the tasks would be appreciated.”
“Last minute change requests have been a little extreme in a few cases.”
“G—- tech were good!”
….

1. Were you happy with the kinds of tasks that were assigned to you?
“Yes!”
“Can’t complain”
“Yes. My work was pretty much always scoped to my expertise.”
“Yes, most of the time, but sometimes bugs like to hide or be diffcult to

track.”
“Most of the time I was bug fxing monkey, but retrospectively it was ok…

but frustrating”
“Yes, happy to take on more”
“I’m happy with any task, I like challenges.”
“Yeah for the most part.”

Source: A typical Post Mortem Document of Slippery
Games Inc. 2017. Redacted. Anonymous.

1. Overall, how do you feel [Redacted] went?
It could have been managed better. It was initially going to be released
around September? But then it was moved back to December? And then
it was moved again back to March? And then it was moved back again
to June? Missing so many deadlines seems bad for the reputation of the
company

2. Which aspects went well during the development of [Redacted]?
The optimisation which some how managed to improve the performance of
[Redacted] to the point where the Producers ([Redacted[?) were satisfed with
it. The User Interface seemed to go through a lot of changes and iterations but
somehow the people working on it managed to keep up with the changes.

3. What expectations did you have about working on [Redacted], that did or
didn’t happen?
I was expecting [Redacted] to be released in December. But that did not hap-
pen. I expected to rely on other people’s expertise to help me understand the
project. And they did help when they could especially …

4. What frustrations did you encounter working on [Redacted]?
There was little sense of a Game Design, and how far the production process
was to completing that Game Design. It seemed that everything was in a state of
fux, features were being added or removed, without any announcement.

5. What one thing would be most important to improve for our future projects?
This can be something you have already mentioned that you would like to call
out as the most important thing to you

There should have been more show-and-tell, to give people an idea of what
other people were working on and how far they had progressed.

6. Anything Else?
There was little or no documentation of work done. A lot of communication
seemed to rely on informal verbal communications, when other people may be

Glossary 227

busy and do not have the time to stop their work and explain. And this is also a
faw in the [Redacted] Engine. This Post-Mortem is far too late to feedback into
other Projects which are about to fnish or half-way through.’

Source: A typical Post Mortem Document of Slippery
Games Inc. 2020. Redacted. Anonymous

6.31 TOWER OF BABEL

In his book, ‘The Mythical Man Month’, Frederick P. Brooks compared the confus-
ing language that arises in the Software Evolution Process to the building of the
Tower of Babel.

In Chapter 7, entitled ‘Why Did The Tower of Babel Fail?’, he recognised how the
quality of language deteriorates in the process and along with that the communica-
tion within the project. As different factions adopted slightly different languages to
describe the same process, everyone found it harder and harder to communicate: just
like in the Bible when God stopped the building of the Tower of Babel, by simply
making each of the builders speak different languages.

According to the Genesis account, the tower of Babel was man’s second major engi-
neering undertaking, after Noah’s ark. Babel was the frst engineering fasco…

Well, if they had all of these things, why did the project fail? Where did they lack?
In two respects—communication, and its consequent, organization. They were unable
to talk with each other, hence they could not coordinate. When coordination failed,
work ground to a halt. Reading between the lines we gather that lack of communica-
tion led to disputes, bad feelings, and group jealousies. Shortly the clans began to
move apart, preferring isolation to wrangling.

Source: The Mythical Man Month: Essays on Software Engineering, 20th
Anniversary Edition © 1995, Addison-Wesley. Frederick P. Brooks

6.32 PRIVATE CONVERSATIONS

Some isolated observers may view the private conversations and the decisions which
come out of these, as benefcial to the productivity of a Software Evolution Process.
But that would be a mistake. They may see these conversations as a sign that, at least,
some of the staff have superior knowledge of how the software works. And they can
use this to make incisive decisions that advance the project forward; a project which
would otherwise stagnate if the conversations involved all of the staff.

But such observations would fail to consider other alternative explanations for
this apparent superior knowledge. Namely, the exclusivity of these conversations
stemmed from a serious breakdown in communication, which had occurred early on
in the project. And that the staff who indulged in these conversations did not have
superior knowledge. They were merely using a language which the rest of the staff
could not understand.

Even worse, such observations would fail to recognise that, in a collaborative
team effort, there could be no superiority. A team could only function if all of its
members were partners. And if they were partners, they would all have to be equals.

228 Event-Database Architecture for Computer Games

If a subset of the staff controlled the destiny of a Software Evolution Process then,
to the members of that small team, the rest would be redundant. As such they could
not, in all sincerity, think the rest were equals. And if the rest were not equals, they
would have no reason to collaborate with them. The notion of more effective small
teams within larger ones is as much an oxymoron as the notion of frst amongst equals.

An excellent example of how the Software Evolution Process makes a small sub-
set of a team involved in the Process seem to have superior knowledge to the rest of
the team, but in fact they do not have superior knowledge and merely use a different
natural language, can be seen when you examine modern Game Engines. Take, for
example, the Unity Engine and Editor and the Unreal Engine and Editor.

Both these tools were made to address the same problem i.e. building computer games
on almost exactly the same set of modern computer hardware. And yet the language used
by both sets of tools to describe this same problem, and the same process for solving this
problem is very different. Now it may seem that a small subset of a team which is familiar
with the Unity Engine has superior knowledge to the rest who are familiar with the Unreal
Engine when the company they work for requires them to use the former. Likewise, it may
seem that a small subset of the team which is familiar with the Unreal Engine has superior
knowledge to the rest who are familiar with the Unity Engine or other Game Engines
when the company they work for require them to use the Unreal Engine.

But that perception is false. The subset does not have superior knowledge even
though they seem to be more productive. The subset is simply using a language
and terms that the rest of the team does not readily understand. You can see the
difference between the two languages for the two Game Engines in Table 6.1.

TABLE 6.1
Unreal Engine for Unity Developers

Category Unity Unreal Engine
Gameplay Types Component Component

Game Object Actor

Prefab Blueprint Class

Editor UI Hierarchy Panel World Outliner

Inspector Details Panel

Project Browser Content Browser

Scene View Level Viewport

Meshes Mesh Static Mesh

Skinned Mesh Skeletal Mesh

Materials Shader Material, Material Editor

Material Material Instance

Effects Particle Effect Effect, Particle, Niagara

Game UI UI UMG (Unreal Motion Graphics) and
Slate

Animation Animation Skeletal Mesh Animation System

Mecanim Animation Blueprint

Sequences Sequencer

(Continued)

Glossary 229

TABLE 6.1 (Continued)
Unreal Engine for Unity Developers. Comparisons of the terminology of the
unreal engine and the terminology of the unity engine.

Category Unity Unreal Engine

2D Sprite Editor Paper2D

Programming C# C++
Script, Bolt Blueprint

Physics Raycast Line Trace, Shape Trace

Rigidbody Collision, Physics

Runtime Platforms iOS Player, Web Player Platforms

Comparisons of the terminology of the unreal engine and the terminology of the unity engine.

Source: Unreal Engine for Unity Developers. 2024. Anonymous.

And it takes the rest a long time to pick up each language. In part because there is
little documentation to explain both Game Engines, which is a consequence of the
Software Evolution Process used to make these Engines. And in part because those
who are familiar with one Engine have not got the time, inclination or eloquence to
explain the terms to those who are not. And in part because the Software Evolution
Processes, using these Engines, are themselves inventing new words, redefning
words and adding to the overall confusing language of the Process.

A small subset of the design team with superior application domain knowledge often
exerted a large impact on the design…the small, but infuential, design coalitions that
developed on numerous projects represents the formation of a small team in which
collaboration was more effective. This decomposition of a large design team into at
least one smaller coalition occurred when a few designers perceived their tighter, less
interrupted collaboration would expedite the creation of a workable design.

Source: A Field Study of the Software Design Process for Large
Systems © 1988, Association of Computing Machinery Inc.

Bill Curtis, Herb Krasner and Niel Iscoe

6.33 RESEARCH STUDIES

Studies conducted for the International Business Machines Corporation (IBM) and
the Microelectronics and Computer Technology Corporation (MCC) showed that
improved communication had a benefcial effect on productivity.

Study participants indicated that the improved communication among community
members contributed to successfully executed projects, increased new business, and
product innovation.

Source: Understanding the Benefts and Cost of Communities of Practice
© 2002, Association of Computing Machinery Inc. David R. Millen, Michael A.

Fontaine and Michael J. Muller

230 Event-Database Architecture for Computer Games

Many techniques were used to organize and communicate a shared system model.
Successful projects usually established common representational conventions to facil-
itate communication and to provide a common reference for discussing system issues.
From a team perspective, this sort of representation was valuable as a common dialect
for project argumentation, rather than as a basis for static documentation.

System engineer: The ER diagram means that everybody speaks the same lan-
guage. Developers, designers, human performance people, we all use the same lan-
guage…It was 6 months or so before it settled down, but once it did, we could resolve
all problems in terms of the diagram.

Source: A Field Study of the Software Design Process for Large
Systems © 1988, Association of Computing Machinery Inc. Bill Curtis,

Herb Krasner and Niel Iscoe

6.34 LACK OF A PLAN (IN SOFTWARE EVOLUTION)

Instead of the plan (i.e. the game design and technical design) providing for contin-
gencies, the plan itself becomes a contingency, i.e. a future event which cannot be
predicted with certainty.

Since the plan becomes a future event, in the Software Evolution Process, the
process begins with just a vague set of points, sometimes called a ‘Shopping List’ or
a ‘Wish List’, listing features that may be in the fnal plan or product (i.e. the game).

And a lot of uncertainty remains throughout the process, right till the very end,
about what the fnal plan will be.

J—- [Redacted] wanted some kind of tool that could be used to write a quick game,
based on HTML5 in one day. This was in response to S—- [Redacted] receiving an
E-MAIL from the BBC asking him to confrm what kind of technology F—- P—-
[Redacted] be using, including HTML5.

One suggestion was to use FLAMBE game engine. … C—- [Redacted] thought it
may take a few Fridays to do.

Source: A typical Diary of a Software Evolution Process of Slippery
Games Inc. 2014. Redacted. Anonymous

J—- [Redacted] shared the latest version of his SOFTWARE DESIGN for u—- 2.0
[Redacted] on GOOGLE DRIVE:…

It was very vague. It had no introduction. But instead went straight into giving a
vague technical description of the C++ CLASSES that will be used, the tools, and
the SOFTWARE PRODUCTION PROCESS for building it. It was all arranged in a
random manner.

The document was edited to include an introduction…
He was keen to get started making u—- 2.0 [Redacted] despite the vagueness of the

document. He wanted to set up the SOFTWARE REPOSITORY for it straight away,
although he had no clear idea of what was going to go in that REPOSITORY apart
from the fles of A—- SOFTWARE LIBRARY [Redacted] for developing software
based on F—- P—- [Redacted]…

J—- [Redacted] wanted the REPOSITORY set up. So that it would include fles
(CMakeLists.txt) which you could use with the CMAKE command to build the u—-
2.0 [Redacted] on different COMPUTER HARDWARE and OPERATING SYSTEMS

Glossary 231

straight away. Even though u—- 2.0 [Redacted] had no written design, he had no idea
what he was going to implement in it, apart from one or two “core” MODULES in his
head, he had no clear vision about where u—- 2.0 [Redacted] was going.

Initially, before today, he said that it would only implement a subset of features of
F—- P—- [Redacted]. But today he said it would implement the full set of features.
After he read the amendements to his crude the design, which had been amended
to include an introduction which explicitly spelt out the initial goals of u—- 2.0
[Redacted], he changed his mind. He could see that u—- 2.0 [Redacted] was not
going to be all that he had promised to his customers. So he forced himself to commit
to implementing all of the features of F—- P—- [Redacted].

In the end, the REPOSITORY was not set up for the CMAKE command today. He
claimed to be disappointed by the progress made that day. But seemed delighted when
the offer was made to continue work on it tomorrow. He said then “we could crack
on on Monday” or words to that effect. He seems eager to begin something he has no
desire to spell out in a design, and therefore has no clear vision where he is going to.
And he gets upset when people expose this ignorance by insisting for more details in
some kind of written design. He kept repeating this when asked for clarification as to
what the CMAKE command was meant to build:

[–/–/2014 –:–:–] J—- [Redacted]: heres the cmake setup required:
u—-[Redacted].lib (static lib)

• compile src/u—-[Redacted]

u—-[Redacted]test.exe (test executable)

• compile test/u—-[Redacted]/
• compile thirdparty/UnitTest++
• compile projects/xcode/u—-[Redacted]2-proto-dev/u–2-proto-dev/main.

cpp

As if that was meant to mean something outside of his own head. As if that explained
the goals and vision for the project.

Source: A typical Diary of a Software Evolution Process of Slippery
Games Inc. 2014. Redacted. Anonymous

6.35 DEFAULT PROCESSES (BASED ON NEO-DARWINISM)

Other industries tend not to make explicit references to the theory of Biological
Evolution, through the names of their default processes. They are more pragmatic
about what they call these processes. And, but for the efforts of M. M. Lehman, the
Software industry would not have adopted the Software Evolution Process, to refer
to their default processes either.

Instead, they would have been content, as has been the case with other industries,
to use ‘trial and error’ or ‘prototyping’. Nevertheless, all of these default processes,
both in Software and other industries, rest on the same two pillars as Neo-Darwinism.
Namely, theoretically, each one rests on the small, incremental, evolutionary, growth
of a product, accompanied by some form of natural selection.

In other industries, this growth and natural selection would informally be directed
by the experience and intuition of those involved in the process. So you would rarely
come across any explicit references to Neo-Darwinism. But some direct this growth

232 Event-Database Architecture for Computer Games

and natural selection through a more formal method. And in the description of these
methods, you would find references to Neo-Darwinism. These include, for example,
The Theory of Inventive Problem Solving (or TRIZ in its Russian abbreviation),
which has been applied in Manufacturing industries, Biomedical Research and
Medicine, amongst others.

Trial and error still plays a key role in product development. The answer is not to
avoid mistakes but to make them early and often.

…

Designers dislike the phrase “trial and error” - it sounds so uncontrolled and
wasteful…But some trial and error remains at the heart of new product development.
That’s especially true for smaller companies who are not trying to protect an estab-
lished product niche but hoping to create something entirely new. In doing so, design
engineering shares a methodology with people engaged in the arts.

The novelist writing a book, the sculptor chiseling a statue, the musician compos-
ing a concerto, the engineer designing a bridge, and the theater director giving her
actors the first crude stage blocking all allocate their resources so that improvement
in their product is by successive approximations,” wrote Billy Vaughn Koen in his
book “Discussion of The Method: Conducting The Engineer’s Approach To Problem
Solving.”

Koen sees the engineering method everywhere: All creative endeavors are a form
of problem solving in which perfection is not possible…Picasso’s early sketches for his
famous painting “Guernica” is “absolutely identical to what the engineer is doing -
getting to the goal by successive approximation…”

Lenny Lipton is the CEO and principle researcher of StereoGraphics, a pioneer in
3D video displays…

“Day to day, most of what I do is still trial and error,” he says. “Obviously, you
need some wisdom, based on experience. But mostly, I try different things, find out
what works, and stop doing what doesn’t work. Trial and error is a pragmatic form
of hope.”

Source: Thinking in Prototypes © 2005, Design Continuum. Bart Eisenberg

Effective and efficient development of new generations of products and processes is
the mighty weapon in the competitive struggle. Presently, there is no structured meth-
odology to perform this extremely important activity and the prevailing approach is
the “trial and error,”…

The theoretical foundation of the TRIZ technology forecasting is a set of the
Laws or Prevailing Trends of Technological Systems Evolution revealed by analy-
sis of hundreds of thousands of invention descriptions available in the world patent
databases…

The Laws of Evolution reflect significant, stable, and repeatable interactions
between elements of technological systems and between the systems and their envi-
ronment in the process of evolution…

Thus, the main benefits of the TRIZ forecasting are the following:

• TRIZ forecast means developing conceptual designs of new systems. In
other words, TRIZ forecast shows not only what will happen, but also how
to achieve the desirable results.

• Higher accuracy of the forecast, since it is based on the Laws of Technological
Systems Evolution.

Glossary 233

• Detection of the point in time when development of the present technology
should be abandoned and new directions should be explored.’

Source: Guided Technology Evolution (TRIZ Technology Forecasting)
© 2005, The TRIZ Institute. Victor R. Fey, Eugene I. Rivin

6.36 NEO-DARWINISM

The synthesis of a modern theory with the theory of Biological Evolution by Charles
Darwin. Usually, this refers to the synthesis of genetics with Darwin’s theory.

When he conceived his theory, Darwin was not aware of the role that genes played
in determining the characteristics of animals and plants. Genes are small parts of
molecules, found in the cells of living animals and plants. The components of each
gene determine the appearance of the animal or plant, its eyes, hair, hands, nose,
legs, colour etc.

Although Darwin proposed, in his theory, that animals inherited traits from par-
ents, he did not know that these came from the genes of the animals. He also did
not believe that random mutations were responsible for the diversity within animals.
Instead, he believed that the habits of the parents progressively, physically changed
the bodies of these animals. And these habits and physical traits were, in turn, inher-
ited by the children. And this was responsible for the diversity.

It was only later, after Charles Darwin had published his theory in 1859, that it
was discovered, in 1865 by Gregor Mendel, that the physical changes of animals or
plants could not be inherited by the children of animals or plants. Even later still,
in 1910, 28 years after Darwin died, Thomas Hunt discovered that genes were the
device which controlled, at least, physical inheritance. And shortly after that, the
idea of random mutations was added to the modern concept of Biological Evolution.
Random errors that occurred, for example, during the copying of genes or due to
radiation, within cells, were put forward as being responsible for these random muta-
tions. And these mutations were responsible for the diversity of animals.

But, to date, all attempts to artificially replicate such mutations have been unsuc-
cessful. And the results have either been benign, only helping protect against some
diseases, but without changing physical appearance. Or the results have been negli-
gible or degenerative.

Nevertheless the attempts to synthesise modern theories and Darwin’s origi-
nal theory, to demonstrate the feasibility of Darwin’s theory have produced Neo-
Darwinism. And Software Evolution is just another instance of Neo-Darwinism.

neo-Darwinism
noun
neo-Dar·win·ism |\- d̍är-wə-ˌniz-əm
\
Medical Definition of neo-Darwinism
: a theory of evolution that is a synthesis of Darwin’s theory in terms of natural selec-
tion and modern population genetics’

Source: Neo-Darwinism © 2002. Merriam-Webster’s Medical
Dictionary, Merriam-Webster, Inc.

234 Event-Database Architecture for Computer Games

The importance he placed on this mechanism was evident in the name of his book: The
Origin of Species, By Means Of Natural Selection. Natural selection holds that those
living things that are stronger and more suited to the natural conditions of their habi-
tats will survive in the struggle for life. For example, in a deer herd under the threat
of attack by wild animals, those that can run faster will survive. Therefore, the deer
herd will be comprised of faster and stronger individuals. However, unquestionably,
this mechanism will not cause deer to evolve and transform themselves into another
living species, for instance, horses. Therefore, the mechanism of natural selection has
no evolutionary power. Darwin was also aware of this fact and had to state this in his
book The Origin of Species: Natural selection can do nothing until favourable varia-
tions chance to occur.30

…So, how could these “favourable variations” occur? Darwin tried to answer
this question from the standpoint of the primitive understanding of science in his age.
According to the French biologist Lamarck, who lived before Darwin, living creatures
passed on the traits they acquired during their lifetime to the next generation and
these traits, accumulating from one generation to another, caused new species to be
formed. For instance, according to Lamarck, giraffes evolved from antelopes; as they
struggled to eat the leaves of high trees, their necks were extended from generation
to generation. Darwin also gave similar examples, and in his book The Origin of
Species, for instance, said that some bears going into water to find food transformed
themselves into whales over time.31 However, the laws of inheritance discovered by
Mendel and verified by the science of genetics that flourished in the 20th century,
utterly demolished the legend that acquired traits were passed on to subsequent gen-
erations. Thus, natural selection fell out of favour as an evolutionary mechanism.

…In order to find a solution, Darwinists advanced the “Modern Synthetic
Theory”, or as it is more commonly known, Neo-Darwinism, at the end of the 1930’s.
Neo-Darwinism added mutations, which are distortions formed in the genes of liv-
ing beings because of external factors such as radiation or replication errors, as the
“cause of favourable variations” in addition to natural mutation. Today, the model
that stands for evolution in the world is Neo-Darwinism.

Source: The Scientific Collapse of Darwinism © 2005, Harun Yahya

Neo-Darwinists suppose that genetic mutations within certain species can account
for speciation, yet, while genetic mutations do occur, the kind that are beneficial have
only been found at the molecular level, accounting for things like resistance to certain
diseases. For Darwin’s macroevolution theory to be true, the mutations necessary to
change one animal into another would have to affect the animal’s morphology (the
shape and structure of its body). To date there has been no evidence that beneficial
mutations affecting morphology have occurred in the wild. Mutations of this sort have
proved to be either benign or detrimental to the survival of the mutant, utterly contra-
dicting the Darwinist view.

Source: The Problem With Evolution, Intolerance For Independent
Thought © 1997-2005, Ether Zone. Edward L. Daley

6.37 NON-DISCLOSURE AGREEMENT

A confidentiality agreement not to divulge information relating to a software proj-
ect, to anyone outside that project. The agreement would normally be used to stop
the disclosure of original inventions. And it may sometimes be incorporated into

Glossary 235

the contracts of the staff involved in that project. But the agreement has often been
abused.

The Non-Disclosure Agreement or NDA has often been reinforced by notices
on the documents of the project, proclaiming each one as ‘Strictly confdential’. In
the Computer Games industry, these documents have included the game design and
technical design. Even though such notices have been redundant.

Some in the Games industry use the agreement for marketing purposes. Since
they believe that a large amount of sales of a game would be lost without the use of
such agreements, to stop the general theme or licence for a game being made public,
before it was released.

An example of what they would consider a serious violation of an NDA would be
for staff to allow some visitors, to a company, to catch a glimpse of a game based
on a comic book hero, such as Batman, while this was being developed. Not for a
glimpse of any original character. Nor for any technical detail about the game. Nor
for any in-depth knowledge about the content, the story or the game design. But
merely divulging the knowledge of the game being based on Batman would be con-
sidered, by them, to be a serious violation. And any staff at the company, deemed
responsible, would be given some kind of formal warning, if not dismissed, for even
revealing this to someone outside of a project.

Nevertheless, this would be an abuse of an NDA. Non-Disclosure Agreements
were historically used for technical innovations in the Software Industry: not for
marketing strategies. And such a use would be an abuse. It would not matter whether
the fnancial backers of a project required the Software Developer to keep the proj-
ect secret. Some believe that this would excuse the abuse of NDAs, by Software
Developers, in the Computer Games Industry.

But the abuse of NDAs, by their fnancial backers, would in no way excuse the
abuse of NDAs by the Software Developers: the two abuses would not cancel each
other out. ‘Two wrongs do not make a right!’ as the proverb says.

Often interviewees will have to sign an NDA before being interviewed by a
Software Developer in the Computer Games industry. In case the interviewee is
shown or given a copy of a game that has yet to be publicly released. The NDA
would include the same kind of clauses you would fnd in software licences that
accompany games that were released. That is to say, you will fnd clauses that
deny any warranty of the software for any purpose, to the software user. These
clauses, just like the clauses in software licences, are further evidence of how the
software user is denied a role in the Software Evolution Process used to build
the game. Even though the Software Evolution Process is nominally meant to be
based on feedback from the software user. Furthermore, these clauses undermine
the implication that the NDA protects something that is valuable to the Software
Developer. How can the software be valuable if it is not ft for any purpose? And
the Software Developer denies any warranty of the software for any purpose?
Unless the Software Developer is saying it is valuable strictly in the Marketing
sense and sales sense. That is to say the ability of the Developer to either market
itself or its products or to increase its sales or share value only. But it is not valu-
able in the practical application sense or usefulness to society sense. There is an
example of a NDA in Figure 6.1.

236 Event-Database Architecture for Computer Games

FIGURE 6.1 A typical example of a page from an incomplete game design in a Software
Evolution Process of Slippery Games Inc. (Source: A typical game design from a Software
Evolution Process of Slippery Games Inc. showing the excessive use of confdentiality to
shroud in mystery unoriginal game designs. 2005. Anonymous.)

Glossary 237

‘NON-DISCLOSURE AGREEMENT

THIS AGREEMENT (the “Agreement”) is made between

and

Candidate name:

Address:

and entered into as of date:

…

5. All Confdential Information and Confdential Materials are and shall
remain the property of Disclosing Party. By disclosing information to
Receiving Party, Disclosing Party does not grant any express or implied
right to Receiving Party to or under Disclosing Party patents, copyrights,
trademarks, or trade secret information. Receiving Party may only use such
Confdential Information and Confdential Materials to evaluate

6. Receiving Party shall return all originals, copies, reproductions and sum-
maries of Confdential Information or Confdential Materials at Disclosing
Party’s request.

7. If Disclosing Party provides pre-release software to Receiving Party, such
prerelease software is provided “as is” without warranty of any kind.
Receiving Party agrees that neither Disclosing Party nor its suppliers
shall be liable for any damages other then by intend whatsoever relating to
Receiving Party’s use of such pre-release software.’

Source: A typical Non-Disclosure Agreement for interviewees
of Slipper Games Inc. 2024. Anonymous

6.38 ORIGINAL GAMES (RELEASED EACH YEAR)

The majority of the computer games that have been released each year have tended
to be clones or sequels of successful games from the past. Or these are based on
popular franchises from other industries such as characters from comic books, book
series, flms, TV series, sports or toys. The top ten most successful games released
each year rarely include an original game. This is not only a refection of the famil-
iarity and confdence in these brands, but the unoriginality of the alternatives.

Jason Della Rocca, executive director of the International Game Developer’s
Association, or IGDA, said he hopes the industry will be able to offer more diversity
to its fans and new consumers…

That leads to other issues in the industry, which is seeing more risk aversion, Della
Rocca said.

“They know they can bank on the success of previous games,” Della Rocca said.
“There’s a lack of innovation, originality, a lot of sequels, a lot of games based on
movies, book or comic book licenses. They don’t want to risk creating their own
worlds.”

Source: The evolution of video games … to now, where games evolve alongside the
consoles © 2005, The State News. Michigan State University. Lauren Phillips

238 Event-Database Architecture for Computer Games

6.39 MYTHICAL MAN MONTH

The theory is if it took one person a certain amount of time to complete a task, it
would take two approximately half the time to complete that same task.

The theory of a Man Month was devised to plan and control projects. It was a
unit devised to quantify how long it took one member of staff to complete a task, in
months. So that the leadership of the staff could use this to methodically project how
much time it should take other members of staff, especially a larger group of staff,
to complete the same task.

But such projections were not methodical. Since these did not take into account
the added complexity of the task caused by introducing more staff. For example,
the dependencies between the staff would require more and clearer communica-
tion between them as their numbers increased. The dependencies between the staff
would mean that the more new staff that were introduced, the more time would be
required of the old staff, to teach the new staff about the task, before they could con-
tribute. And the more errors the new staff would make in the meantime would also
consume more time of the old staff. The dependencies between the staff would also
require greater coordination between them for access to limited resources.

It was partially an exasperation with the belief in the Man Month that Frederick P.
Brooks was inspired to write his book which made the phrase Mythical Man Month
famous. He was working at the International Business Machines Corporation (IBM)
at the time when he noticed the use of the Man Month by the leadership of the staff.

Adding manpower to a late software project makes it later.

Source: The Mythical Man Month: Essays on Software Engineering,
20th Anniversary Edition © 1995, Addison-Wesley. Frederick P. Brooks

6.40 BUG

A software error. The name comes from an anecdotal story about an error caused by
a moth short-circuiting an old computer.

6.41 BUG DATABASE

A Database of the errors found in a software product. In the Computer Games indus-
try, each error recorded in the Database would have several properties.

The frst of these properties would be a number used to identify the error. This
would normally correspond to the order in which the error was discovered (e.g. 0001
for the frst, 0002 for the second, 0003 for the third etc.)

A second property would be a brief summary. This would describe where the
error appeared in the game and what happened just before it appeared.

A third property would be a classifcation of its severity. Each error would
be classifed by a letter ranging, from ‘C’ for the least severe, to ‘A’ for the most
severe.

A fourth property would be a classifcation of the component of the game
design the error was related. This would be in the form of one of several keywords.

Glossary 239

This could be either ‘Crash’, for errors which literally stopped the game. Or this
could be ‘Text’, for errors on the menus and the wording that appeared somewhere
in the Game World. Or this could be ‘Function’, for errors relating to the order in
which some events occurred in the game. Or this could be ‘Graphics’, for errors in
the various 2D images and 3D models. Or this could be ‘AI’, for errors in the behav-
iour of computer-controlled characters. Or this could be ‘Logic’, for errors which just
appeared counterintuitive, or contradicted other features of the game. Or this could
be ‘Audio’, for errors relating to the sound and music heard during the game.

A ffth property, which every error would have, would be the name of the member
of staff assigned to fx it. And this would be accompanied by some kind of status
indicating whether the error was not fxed, has been claimed fxed but not verifed or
been fxed and verifed.

However, the Database containing all of these properties would be used as a sub-
stitute for a complete game design. So many of the properties recorded would, at
best, be misleading and at worst false.

Firstly, the total number of errors in the Database would bear no relation to the
total number of errors in the product. Since there never was a complete game design
to compare the product to. Thus, the order in which the errors would be discovered
would be arbitrary. And the identity number of these errors would be random. For
example, all of the errors that were discovered in one area of the game e.g. the Front
End menus, would not have consecutive identifying numbers. Nor would these be
the lowest numbered errors in the game e.g. 0001, 0002, 0003 etc. Instead the lowest
numbered errors would merely refect the frst superfcial errors discovered in the
game. Not even the most signifcant errors.

Secondly, the quality of the summary, of the errors in the product, would vary
from entry to entry. Some of the entries would be produced by the Game Testers,
of the Software Developer. Others would be produced by the Game Testers, of their
fnancial backers. Some would be produced by Game Producers, Game Designers,
Game Artists and Sound Designers. And others would be produced by Game
Programmers. The quality of each of their entries would vary greatly, depending on
their knowledge of the history of the project, and their intuitions. As they would all
have no authoritative game design to refer to.

Thirdly, the severity of each error would likewise be subject to the whims of their
intuitions. All errors that caused the game to literally stop would be classifed as ‘A’.
And those missing features which were necessary to meet any standards set by an
important third party, such as the fnancial backers, or game console manufacturers,
would also be classifed as ‘A’.

However, features which contradicted what little of the game design that had been
written, at the beginning of the production process, may or may not be classifed
as ‘A’. Even though all of these would be factual errors that could be confrmed by
documentation.

Features which some of the testers just found very annoying, but did not stop the game,
would also be classifed as ‘A’. While other incongruous features, they would merely clas-
sify as ‘B’ or ‘C’ even though, by their own admissions, these would all be errors.

It would all depend on either whether those who saw these errors knew about the
original design. Or it would depend on what they could speculate about that design,

240 Event-Database Architecture for Computer Games

from the previous versions of the game they had seen. Or it would depend on the
informal discussions, which they had conducted with other members of staff, to dis-
perse their ignorance about the design.

The different levels of severity, assigned to the errors in the Database, would
merely be there to compensate for this ignorance. Furthermore, these levels would
even include one called ‘suggestions’. That is to say, new ideas which they feel should
have been part of the original game design. And some of these ‘suggestions’ would
eventually end up being promoted and reclassifed as ‘A’, ‘B’ or ‘C’.

Fourthly, the keywords corresponding to the different components of the game
design, assigned to each error, would imply that the game design was complete.
Since only if all the components of the game design were known could all the cat-
egories of errors in these components be known. But, of course, this would be false.
The game design would not be complete. And those deciding the different keywords
would be uncertain about how to classify certain errors. Some of their classifcations
would overlap with others, because of this uncertainty. Thus, their classifcations
would be almost meaningless.

Take, for example, the set of keywords described earlier, one of which included
‘Design’. Most of this set would be completely redundant since all errors in the prod-
uct would be the direct result of the incomplete game design and could be classifed
as ‘Design’.

Finally, the status of each error, recorded in the Database, would be just as mean-
ingless. Since those verifying the errors that were fxed would be suffering from the
same ignorance, about the game design, as those who discovered these errors in the
frst place. Their uncertainty would be refected in many ways. One of these would
be their use of adjectives as nouns.

For example, they would use a word like ‘Shippable’, to categorise the status of an
error. This would refer to an error that some abortive attempt had been made to fx.
And the error was consequently decided not to be severe enough to stop the release
of the product.

Another instance of the lack of credibility in the Database would be amongst the
other options which the software itself provides. For the member of staff assigned
to fx an error would be given the option to close its entry in the Database and have
it waived. Provided, that is, this was accompanied by some explanation. However,
frequently, this explanation would be rejected by the tester who made that entry, who
would reopen it, changing its status back again. So the error would go back and forth,
in this manner, for several days, between the two states because of the absence of any
authoritative device for settling disputes, including the Bug Database.

Further examples of the meaninglessness of the classifcation of Bugs in the Bug
Database would be evident by the questions the staff frequently ask, openly, at the
end of production.

How did this go on for so long unnoticed?

This would be asked when it became apparent, at a very late stage, that some
feature of the product was erroneous. The implication would be that this feature was

Glossary 241

so obviously erroneous that it was incredible it managed to escape anyone’s notice,
including those who made entries in the Bug Database. But this implication would
be false. The feature was in all likelihood noticed, but ignored. All due to the lack
of any authoritative device that would naturally draw attention to its faws, including
those who made entries in the Bug Database.

Software Developers frequently use a Bug Database to monitor ad hoc pro-
cesses, such as the Software Evolution Process. Like that process, it never reaches
any satisfactory conclusions. And it would be rare for all the entries in the
Database to be resolved. Since the size of the Database has only an incidental
bearing on the quality of their fnal product, different Developers have differ-
ent thresholds for the number of unresolved entries, below which the product
would be released to the public. Some have a threshold of around 50, while others
have a threshold of around 100. Others have a threshold even higher and have no
qualms referring to the unresolved entries euphemistically, as ‘issues’. There is
an example of a graph showing the total new errors reported in a Bug Database in
Figure 6.2. There is an example of a Web Page showing the total number of Bugs
in different categories in Figure 6.3.

FIGURE 6.2 A typical example of a bar graph showing the new errors reported in a Bug
Database, each day, over the course of 6 months, during a Software Evolution Process of
Slippery Games Inc. (Source: A typical report of new errors in a Bug Database, during 6
months of the fnal, testing phase of a Software Evolution Process of Slippery Games Inc.
Anonymous. January 2007.)

242 Event-Database Architecture for Computer Games

FIGURE 6.3 A typical example of a Web Page showing the high number of Bugs reported
in a Bug Database during the QA phase, of a Software Evolution Process of Slippery Games
Inc. (Source: A typical report of errors in a Bug Database, during the fnal, testing phase of a
Software Evolution Process of Slippery Games Inc. Anonymous. June 2007.)

6.42 MEMORANDUM

The primary source of the explanation of the tools being used, in a Software Evolution
Process, are memoranda. These would usually be delivered through electronic mail
(e-mail).

Fyi, we sometimes have poorly authored Logan strings with missing
token indices, and it’s important to understand how these should
be handled when adding strings into the code. There may have been
emails sent around about this in the past, but I can find them - so
here’s a new example.

A made up news item with 3 alternative phrases:

String _ Id.sch#1 ““#4-Number# year old #2-Player# has suffered
#3-Injury#.””

String _ Id.sch#2 ““#4-Number# year old #2-Player# was injured
in the fixture against #7-Club#.””

String _ Id.sch#3 ““#2-Player# has suffered #3-Injury#. Manager
#6-Staff# says he’ll be back playing for #8-Club# in no
time.””

The set of tokens used across all the alternatives is as follows:

2-Player

Glossary 243

3-Injury
4-Number
6-Staff
7-Club (other club)
8-Club (player’s club)

Not all token indices have been used (there’s no token 1 or 5). Part
of the text exporter process will recognise this and will renumber the
tokens, e.g. as if the strings had been authored as follows.

String _ Id.sch#1 ““#3-Number# year old #1-Player# has suffered
#2-Injury#.””

String _ Id.sch#3 ““#3-Number# year old #1-Player# was injured
in the fixture against #5-Club#.””

String _ Id.sch#2 ““#1-Player# has suffered #2-Injury#. Manager
#4-Staff# says he’ll be back playing for #6-Club# in no time.””

However, the simplest way to think of this (rather than how
tokens are renumbered) is that the token order specified in a call
to NMAddNewsItem needs to match the numeric order in the string. So
to add this news item you might implement it as follows (assuming a
headline containing just the Player token):

NMSetParams8 (NM _ RESET, ““tytmStClClNuPlIn”“, tNewsItem::NEWS _
TYPE _ XXXX, Club,

NIStaff(Manager),
NIClub(Club),
NIClub(OtherClub),
etc.
NMAddNewsItem (““Pl.PlInNuStClCl””, NEWS::THE _ HEADLINE _ FOR _

STRING _ ID <news::THE _ HEADLINE _ FOR _ STRING _ ID>, NEWS::
STRING _ ID <news::STRING _ ID>) ;

Bear in mind that strings entered into DevStrings.cpp won’t have
been renumbered (as it’s one of the exporter tools that does this).
This means that the above code would produce a broken news item
until after a text export. This isn’t really a problem so long as
you’re aware of it (and most of our strings are correctly authored
and so don’t have this issue).

If you have a poorly indexed string that you’d like to display
correctly while it’s still in DevStrings, I’d suggest manually renum-
bering it in DevStrings. If the string has alternative phrases but
is already in Logan, you only really need to copy a single phrase
into DevStrings and edit that.

Source: A typical E-mail from a Software Evolution Process of
Slippery Games Inc. Anonymous. June 2006

‘This README provides instructions for doing a [Redacted] text
export.

General Notes

=============

Do not have [Redacted] project open in Visual Studio.

The text exporter tool project is under [Redacted]/Tools/XXXXXGames/
Apps/TextToDBConverter. This needs to have been built (do a release
build) beforehand (but doesn’t need to be rebuild each time). (See
instructions below)

244 Event-Database Architecture for Computer Games

The tool scans the source code (under/[Redacted]/[Redacted]) and.
xml files (under/[Redacted]/PS2/Screens/[Redacted]/XBox/Screens/
[Redacted]/PSP/Screens) to find out which strings are actually used.
Only these strings are exported. If you want to export strings that
aren’t used yet, put the string IDs (enums) in code either in a com-
ment in the form ##string _ id## or in a #if 0 block.

Checking Out Files

==================

• Sync up on everything (i.e. get latest in Alienbrain)
• Open up [Redacted]/Data/Logan/Exports in windows explorer
• Run CheckoutFiles.bat/CheckoutFiles _ EnglishOnly.bat (depend-

ing on whether you are doing all languages or just English)
• Build the text exporter tool (see above) (make the entire

TextToDBConverter folder writable before compiling)
• Check the file history of e.g. [Redacted]/BTR/Data/News.h to

see the version number of the last export.
• Check that you’ve gained a change set in Alienbrain and

rename to append the new version number e.g. “Text export
(English only) v25”

• Note that there are now change sets in both [Redacted] and
[Redacted]

Text Data Conversion

====================

• ConvertAll.bat/ConvertAll _ EnglishOnly.bat
• CopyAll.bat/CopyEnglish.bat and check that the copy commands

each generate a ‘1 files copied’ result
• CopyHeaders.bat and again check for copy command errors
• Copy the entire [Redacted]\CD\PS2\Lang folder to the platform

you are testing (e.g. PC = [Redacted]\CD\PC\Lang) but do not
copy the Japanese folder or Lang.dat

Rebuild

=======

• Open up [Redacted] in Visual Studio
• Open TextFile/DevStrings.cpp and remove any new strings peo-

ple have added. These will usually have been adding into
Logan as well and so should come through in the export.

• Do a full rebuild
• It may be necessary to re-instate some string enums and their

matching entries in DevStrings.cpp. This should be pretty
straightforward by checking the file changes in Alienbrain.

Test

====

• XBox only: Run XBCP or rebuild a single file and relink to
cause the post-build steps to be run. Probably not required
if rebuilding-all using Incredibuild, as running (F5) tends
to cause VC to rebuild a few files and generate the browse
info file.

Glossary 245

• Run up the game.
• Any assertions talking of text file versions means the ver-

sion in the headers and the data files don’t match. Check
files have been copied properly.

• Submit the pending changes for your text export change
set.’

Source: A typical Memorandum from a Software Evolution Process
of Slippery Games Inc. Anonymous. 2006

So for example if we had a loop that was combining data from two
arrays and storing a result eg:

sint32 a[1000], b[1000], c[1000];

for (i = 0; i < 1000; i++)

{

c[i] = a[i]+b[i]

}

If we are not careful this algorithm could result in a considerable
number of cache misses. The worst case being when the a,b and c
arrays are all 4k aligned:

i =0

a[0] read into set 0 line 0x000 - 128byte read

b[0] read into set 1 line 0x000 - 128byte read

c[0] stored into set 0 line 0x000 and dirty bit set for cache
line -

But before this occurs the 128 bytes at c[0] are read into the cache -

128byte read. note this set 0 is the least recently used

i = 1

a[1] read into set 1 line 0x000 - 128byte read (set 1 least recently

used)

b[1] read into set 0 line 0x000 - 128byte read - But before this
read

the cache line is placed in the write buffer since dirty bit set

c[0] written out of write buffer - 128byte write

246 Event-Database Architecture for Computer Games

c[1] stored into set 1 line 0x000 and dirty bit set for cache line -

But before this occurs the cache line is read into the cache
- 128byte

read.

etc.

As you can see this results in 4 128 byte memory accesses (3r and
1w) per iteration of the loop. To ensure that you are not hit by this
you have to make sure that a b and c are at least 128 bytes apart.
Although since we have 2 way set associative cache one of a n and c
can have a similar alignment to the other.

So for example with a and b being 2k aligned (remember to use
the size of cache divided by n for a n way associative cache)
and c being aligned 1k into a 2k aligned block we would have the
following:

i =0

a[0] read into set 0 line 0x000 - 128byte read

b[0] read into set 1 line 0x000 - 128byte read

c[0] stored into set 0 line 0x400 and dirty bit set for cache line -

But before this occurs the 128 bytes at c[0] are read into the
cache -

128byte read.

i = 1

a[1] read from set 0 line 0x000 - cache hit

b[1] read from set1 line 0x000 - cache hit

c[1] stored into set 0 line 0x400 - cache hit.

…

i = 32

a[32] read into set 0 line 0x080 - 128byte read

b[32] read into set 1 line 0x080 - 128byte read

c[32] stored into set 0 line 0x480 and dirty bit set for cache line -

But before this occurs the 128 bytes at c[32] are read into the cache

Glossary 247

- 128byte read.

etc.

So now the algorithm does 3 128 byte accesses for every 32 itera-
tions until the cache the values being added by writing to c[0-256]
need to be written out of the cache due to a[256-384] and b[256-386]
being read into the cache.

If you take the psp with its 61 cycles for the read this optimiza-
tion speeds the code up by 2000%!

Source: A typical E-mail from a Software Evolution Process of
Slippery Games Inc. Anonymous. March 2006

6.43 SOFTWARE ARCHITECTURE

A description of a system for producing software. It includes a description of the compo-
nents of the system, the relationship between these components and the principles that
govern how these components change. The components may be as large as a software
library or as small as a single software module. The components can also vary from any
software documentation to any software tool or member of staff required by the system.
A software architecture can serve as a basis for a software design or (since all the compo-
nents do not have to be software components) a software production process.

The software architecture of a program or computing system is the structure or struc-
tures of the system, which comprise software components, externally visible proper-
ties of those components, and the relationships among them.

…the architecture embodies information about how the components interact with
each other. This means the architecture specifcally omits content information about
components that does not pertain to their interaction.

…the defnition does not specify what architectural components and relationships
are. Is a software component an object? A process? A library? A Database? A com-
mercial product? It can be any of these things and more.

…the behaviour of each component is part of the architecture, insofar as that
behaviour can be observed or discerned from the point of view of another component.
This behaviour is what allows components to interact with each other, which is clearly
part of the architecture. Hence, most of the box-and-line drawings passed off as archi-
tecture are in fact not architectures at all. They are simply box-and-line drawings.

Source: Software Architecture in Practice © 1997, Addison-Wesley.
Bass, Clements and Kazman

The structure of the components of a program/system, their interrelationships, and
principles and guidelines governing their design and evolution over time.

Source: IEEE Transactions on Software Engineering © 1995, Institute of Electrical
and Electronics Engineers. David Garlan and Dewayne Perry

6.44 LOGIC BRANCH

The point where a software procedure decides to follow one path or another, in its
overall task.

248 Event-Database Architecture for Computer Games

6.45 ID

Identifer. A word which identifes one or more sets of data. In a Database, the ID of
each Record is a special Field known as the Key Field or Primary Key.

6.46 SOFTWARE PROCEDURE

A sequence of instructions, for a computer, to perform a task. The sequence can be
used again and again to repeat that task.

6.47 DATABASE

A collection of data arranged for ease and speed of search and retrieval.

6.48 RELATIONAL DATABASE

A Database where all the software data, and the relationship between these, are
organised in tables with rows, known as Database Records, and columns, known as
Database Fields.

…(RDBMS - relational database management system) A database based on the rela-
tional model developed by E.F. Codd. A relational database allows the defnition of
data structures, storage and retrieval operations and integrity constraints. In such
a database the data and relations between them are organised in tables. A table is a
collection of rows or records and each row in a table contains the same felds. Certain
felds may be designated as keys, which means that searches for specifc values of that
feld will use indexing to speed them up…

Source: RDBMS. The Free On-line Dictionary of Computing
© 1993-2001, Denis Howe

6.49 DATABASE TABLE

A collection of Database Records. A group of related data about entities (e.g. char-
acters, locations or items in a Game World) which share the same properties in a
Relational Database.

6.50 DATABASE RECORD

A collection of Database Fields. A group of related data about a single entity in a
Relational Database (e.g. the name of a character in the Game World, its location, its
health, its inventory).

6.51 DATABASE FIELD

A single property of an entity in the Database (e.g. the name of a character in the
Game World). An element in a Database Record.

Glossary 249

6.52 PRIMARY KEY

The frst Database Field of a Database Record that is used to identify that Record,
search for it and refer to it. This has to be a unique word or number.

6.53 DATABASE ADMINISTRATOR

A company employee responsible for the design and management of one or more
Databases. The employee is also responsible for the evaluation, selection and imple-
mentation of the Database management system.

6.54 OPEN DATA FORMAT

The description of the layout of data in a Database and how each data is used. This
description is freely available for all software applications to use to read and modify
the Database.

6.55 GAME SOFTWARE

The game modules and game engine that make up a computer game.

6.56 GAME CONTROLLER

A device used to control the User Interface, including the player and other charac-
ters, of a game.

6.57 SOUND STREAM

A recorded sample of sound encoded in a special data format.

6.58 GAME TIME

The number of seconds since a game was started.

6.59 UNIT OF GAME TIME

The assumed minimum time between successive updates of a Game World.
In the Event-Database Architecture, this is the minimum time between successive

updates of a Host Module. The real time may exceed this limit, because the total
time it takes to update all of the Host Modules may be too long.

Most modern Computer Games are dependent on graphics and the rate at which
the graphics or Frames of the Game World are displayed. So the unit of game time
is the minimum time between successive updates of the Frames. Since this depends
on how many graphics are displayed in each Frame, the rate at which the Frames are
displayed changes depending on where the player is in the Game World. And how
many items are in that part of the World? Thus, the unit of game time changes and is

250 Event-Database Architecture for Computer Games

not fxed. And the game modules have to take this into account when updating items
in the Game World e.g. the game modules that update the physics of the Game World.

6.60 POLYGON

A closed plane shape, with three or more sides. Triangles, sometimes called
‘Tristrips’ in the degenerative language of the Software Evolution Process in the
Computer Games industry, are used to make up a 3D model. Quadrilaterals, some-
times called ‘Quads’ in the degenerative language, are used to mark the position of
a rectangular 2D image.

6.61 VERTICES

The point at which two or more sides of a shape meet. Three vertices are used to
form triangles, which make up a 3D model. Four vertices are used to form a quadri-
lateral, which marks the position of a rectangular 2D image.

6.62 VECTOR

The magnitude and direction of a physical quantity e.g. force, speed etc.

6.63 NORMAL VECTOR

A Vector that is perpendicular to the side of a 2D shape or plane of a 3D polygon
which simply specifes the direction in which a 2D or 3D surface is facing.

In 2D geometry, a Normal Vector may be used to specify which direction the
sides of a polygon are facing. Each Vector would be perpendicular to one side of the
polygon, pointing away from its centre.

In 3D geometry, a Normal Vector may be used to specify which direction the
surface of a polygon was facing. If the polygon were isolated, then it would have one
Normal Vector, that was perpendicular to its plane. However, if the polygon were
part of a 3D model, then each vertex of the polygon may have a Normal Vector. The
choice between the two methods would depend on how well you wanted to describe
the surface of the model. The latter method would allow you to describe how each
polygon connects to any adjoining polygon. The Normal Vector at each vertex would
describe the combined surface of the two adjoining polygons that share that vertex.

6.64 TEXTURE

A 2D image which is used to fll in a polygon. Only the region of the image specifed
by the Texture coordinates, of the polygon, is used to fll it in.

6.65 TEXTURE COORDINATES

A set of points describing the region of an image which should be used to fll in a
polygon. There are the same number of points as there are vertices in the polygon.
Each point corresponds to one, unique vertex.

Glossary 251

6.66 FRAME

A single image in an animated sequence. A single image of an animated world.

6.67 X POSITION

The position of a body along the X-axis in a 2D or 3D space.

6.68 Y POSITION

The position of a body along the Y-axis in a 2D or 3D space.

6.69 Z POSITION

The position of a body along the Z-axis in a 2D or 3D space.

6.70 X ANGULAR POSITION

The rotation of a body, in a local 2D or 3D space with an origin at its centre of mass,
around the X-axis, in a plane perpendicular to the axis or the ZY plane.

6.71 Y ANGULAR POSITION

The rotation of a body, in a local 2D or 3D space with an origin at its centre of mass,
around the Y-axis, in a plane perpendicular to the axis or the ZX plane.

6.72 Z ANGULAR POSITION

The rotation of a body, in a local 2D or 3D space with an origin at its centre of mass,
around the Z-axis, in a plane perpendicular to the axis or the XY plane. In 2D space,
the Z-axis does not exist and it’s just an imaginary axis extending out from the 2D
plane.

6.73 SOFTWARE RENDERING

Rendering items in 2D or 3D space using a Central Processor and main memory in a
computer system. The Central Processor is sometimes called ‘CPU’.

6.74 HARDWARE RENDERING

Rendering items in 2D or 3D space using a specialised Graphics Processor and
Graphics memory in a computer system. The Graphics Processor is sometimes
called ‘GPU’.

The rendering is done by executing the same set of steps, during each Unit of
game time or between each Frame of the 2D or 3D space being displayed on the
screen. Each cycle through these steps is also called a ‘rendering pass’. A computer
game may use several cycles or ‘rendering passes’ between each Frame. In these

252 Event-Database Architecture for Computer Games

cases, the results of one cycle or ‘pass’ is fed into the next cycle or ‘pass’. To progres-
sively build up the fnal image seen on the screen.

The names of these ‘passes’, and the terminology used to describe them, can be
very cryptic because the steps involved use machine code and mathematics. But the
branch of mathematics involved is basically Linear Algebra, Vectors and Matrix
theory. And all these steps do in the end is render an image of a 2D or 3D Space of
a Game World on a 2D screen.

In this chapter you’ll learn about:

• What is a rendering pass
• Over 20 kinds of passes in Unreal – lighting, the base pass or the mysterious

HZB
• What affects their cost (as seen in the GPU Visualizer)
• How to optimize each rendering pass

…

HZB (Setup Mips)

Responsible for:

• Generating the Hierarchical Z-Buffer

Cost affected by:

• Rendering resolution

The HZB is used by an occlusion culling method 1 and by screen-space techniques for
ambient occlusion and refections 2.

Source: Unreal’s Rendering Passes © 2019. Oskar Świerad

6.75 NEAR AND FAR FOCAL LENGTH

The closest and furthest distance of the visible area or volume in front of a
camera.

6.76 FIELD OF VIEW

The angle between the left-hand side and the right-hand side of the visible area or
volume in front of a camera.

6.77 X SPEED

The speed of a body along the X-axis in 2D or 3D space.

6.78 Y SPEED

The speed of a body along the Y-axis in 2D or 3D space.

Glossary 253

6.79 Z SPEED

The speed of a body along the Z-axis in 2D or 3D space.

6.80 X ACCELERATION

The acceleration of a body along the X-axis in 2D or 3D space.

6.81 Y ACCELERATION

The acceleration of a body along the Y-axis in 2D or 3D space.

6.82 Z ACCELERATION

The acceleration of a body along the Z-axis in 3D space.

6.83 X ANGULAR SPEED

The rotational speed of a body around the X-axis in 3D space.

6.84 Y ANGULAR SPEED

The rotational speed of a body around the Y-axis in 3D space.

6.85 Z ANGULAR SPEED

The rotational speed of a body around the Z-axis in 2D or 3D space.

6.86 X ANGULAR ACCELERATION

The rotational acceleration of a body around the X-axis in 3D space.

6.87 Y ANGULAR ACCELERATION

The rotational acceleration of a body around the Y-axis in 3D space.

6.88 Z ANGULAR ACCELERATION

The rotational acceleration of a body around the Z-axis in 2D or 3D space.

6.89 SOUND CHANNEL

A component of computer-generated sound, which can play back a sound (given the
sound envelope, i.e. the shape of a sound wave or a sound stream) independently, or
mixed with other sound channels.

254 Event-Database Architecture for Computer Games

6.90 ANALOGUE DEVICE

A device which produces data that measures a continuously variable, physical quan-
tity e.g. the rotation of a Joystick about its X, Y or Z axes, the pressure applied to a
button. These devices are used to control characters or User Interfaces in a game.

6.91 DIGITAL DEVICE

A device which produces data that measures a binary, physical quantity e.g. a joy-
stick being moved to the left or right, a button being pressed or released. These
devices are used to control characters or User Interfaces in a game.

6.92 OPERATING SYSTEM

A software that controls how other software shares resources on the same computer
hardware.

6.93 SOFTWARE APPLICATION

A software programme that is used directly by a Software User, through a User
Interface, to solve a problem.

When it is started by an Operating System which in turn is running on computer
hardware, then it shares the resources on that hardware with other Applications.
When it is started on its own on computer hardware without an Operating System,
then it has exclusive access to the resources on that hardware.

6.94 PROCESS (IN AN OPERATING SYSTEM)

A software application or programme or routine that is running in its own space in
computer memory. When it is started by an Operating System or another software
application running on the same computer hardware, that System or Application
can temporarily or permanently interrupt it. To allow other Processes to share the
resources on the computer hardware. Before the Process is resumed.

6.95 THREAD (IN AN OPERATING SYSTEM)

A sub-process generated from another Process being run by an Operating System,
which shares the same space in computer memory as its parent. This simplifes and
speeds up the communication between the child and its parent Process. Unlike a
Process which runs in its own space in computer memory, a Thread has to explic-
itly lock shared resources, and explicitly wait for resources to be released by other
Threads. Since it shares that space in memory with its parent and its siblings.

6.96 TCP/IP ADDRESS

Transmission Control Protocol or Internet Protocol is a protocol for communicating
between two computers on a local computer network. The Address of each computer

Glossary 255

is a unique word, normally made up of 4 numbers separated by dots, used to identify
that computer, and the source and destination of a message.

6.97 PORT NUMBER

A number that represents a channel through which messages can be sent or received
by a computer on a network. Several messages may be sent or received in parallel on
the different channels on the same computer.

6.98 USERNAME

The unique name of a Software User used to identify that User and the resources
e.g. fles, threads or processes, that they own in an Operating System or Software
Application.

6.99 PASSWORD

The unique word that only a Software User knows and uses to authenticate their
access to resources available on an Operating System or Software Application,
that they own.

6.100 AUTHENTICATION TOKEN

A unique encrypted word that is generated by a computer, from a Username
and Password, to authenticate that User’s access to resources available
on an Operating System or Software Application, that they own. Usually the
token last for a limited time before having to be renewed by the System or
Application.

6.101 RELATIONAL DATABASE MANAGEMENT SYSTEM

Software that creates, edits and queries a Relational Database. It normally includes
a programming language, Structured Query Language or SQL, that allows you to
query the database. The software is also responsible for making the Database appear
as one system. Even though it may be distributed across several fles, in several loca-
tions in a File System, across several Operating Systems and across several comput-
ers on a local computer network.

6.102 THE SOFTWARE ARCHITECTURE

The description of all the software modules (and staff) which would be required
to completely implement an Event-Database Architecture. See the chapter enti-
tled “The Software Architecture” in the book Event-Database Architecture for
Computer Games: Volume 1, Software Architecture and the Software Production
Process.

256 Event-Database Architecture for Computer Games

6.103 ENTITY-RELATIONSHIP DIAGRAM

A diagram which shows all the items (or entities) stored in a Relational Database and
the relationship between these items.

6.104 BASIC SET THEORY

A branch of mathematics concerned with producing rational conclusions, about
items in the real world, by abstracting these into groups or sets. Basic Set theory can
be used to create a model of any computer software or hardware. Or a model of any
component of software or hardware.

6.105 HASH-TABLE

A table of information where the entries have been positioned using a Hashing Function.
A Hashing Function is a software procedure which tries to map any random set of
numbers or words onto a non-overlapping set of numbers, within a limited range. This
speeds up the reading and writing of entries in that table.

6.106 PROFESSIONAL DATABASE SOURCES

Database Systems: Concepts, Languages, Architectures © 1999, McGraw-Hill
Education. Paulo Atzeni, Stefano Ceri, Stefano Parabosci and Riccardo Torlone.

6.107 DATA STRUCTURE SOURCES

Introduction to Algorithms, second edition © 2001, MIT Press. Thomas H. Cormen,
Charles E. Leiserson, Ronald L. Rivest and Clifford Stein.

6.108 APPLIED MATHEMATICS SOURCES

Vectors in Two and Three Dimensions (Modular Mathematics S.) © 1995,
Butterworth-Heinermann. Ann Hirst.

6.109 PHYSICS SOURCES

Computational Dynamics, second edition © 2001, Interscience. Ahmed A. Shabana.

6.110 MATHEMATICS SOURCES

The Geometry Toolbox for Graphics and Modeling © 1998, A. K. Peters. Gerald
Farin and Dianne Hansford.

6.111 COMPUTER GRAPHICS SOURCES

Computer Graphics: Mathematical First Steps (c) 1998, Prentice Hall. Patricia
Egerton and William Hall.

Glossary 257

6.112 SOUND ENGINEERING SOURCES

The DSP Handbook © 2001, Prentice Hall. Andrew Bateman and Iain
Paterson-Stephens.

6.113 FREE SOFTWARE

Software which can be freely copied, redistributed or modifed according to its GNU
Public Licence. The software comes with the computer fles used to build it. So that
the software can be easily modifed.

Since the licence has required that it can be easily modifed and redistributed,
this has produced a de facto software architecture for software with this licence.
Namely, it has defned a relationship between the Software Developer and the user,
with regard to the software. The user (and by implication the Software Developer)
has the right to copy the software. And all its components have had to be com-
prehensible and editable to a degree by the user (and by implication the Software
Developer). And that in turn has added a software architecture, directing how the
software has modifed over time, on top of whatever explicit architecture it already
had. So, although like almost all software with normal commercial licences, most
Free Software too has been developed through a Software Evolution Process, this
software architecture mitigates the otherwise harmful effects of the Process. And it
makes Free Software more reliable and robust.

“Free Software” is a matter of liberty, not price. To understand the concept, you should
think of “free” as in “free speech”, not as in “free beer”.

Free software is a matter of the users’ freedom to run, copy, distribute, study,
change and improve the software. More precisely, it refers to four kinds of freedom,
for the users of the software:

• The freedom to run the program, for any purpose (freedom 0).
• The freedom to study how the program works, and adapt it to your needs

(freedom 1). Access to the source code is a precondition for this.
• The freedom to redistribute copies so you can help your neighbor (freedom 2).
• The freedom to improve the program, and release your improvements to

the public, so that the whole community benefts (freedom 3). Access to the
source code is a precondition for this.

Source: What is Free Software? © 2008, Free Software Foundation Inc.

6.114 ELECTRONIC DOCUMENTATION SOURCES

OpenOffce.org 1.0 Resource Kit © 2003, Prentice Hall PTR. Solveig Haugland and
Floyd Jones.

6.115 PROGRAMMING SOURCES

The C Programming Language, second edition © 1988, Prentice-Hall. Brian W.
Kernighan and Dennis M. Ritchie. ISBN 0-13-110362.

https://OpenOffice.org

258 Event-Database Architecture for Computer Games

The C++ Programming Language © 1993, Addison-Wesley. B. Stroustrup.

6.116 COMPILER SOURCES

Using GCC: The GNU Compiler Collection Reference Manual for GCC 3.3.1 ©
2003, Free Software Foundation. Richard M. Stallman and the GCC Developer
community.

6.117 REVISION CONTROL SOFTWARE

A tool used to store, retrieve, log, identify and merge different versions of software in
production. It stores all the sources which produced each version e.g. the documenta-
tion of the software designs, the computer fles used to build the software modules,
the software data etc.

6.118 REVISION CONTROL SOURCES

Essential CVS © 2003, O’Reilly and Associates. Jennifer Vesperman.
Applying RCS and SCCS: From source control to Project Control (Nutshell

Handbook) © 1995, O’Reilly and Associates. Don Bolinger and Tan Bronson.

6.119 FILE LIBRARY SOURCES

The Standard C library © 1991, Prentice Hall PTR. P. J. Plauger.

6.120 GRAPHICS LIBRARY SOURCES

OpenGL Reference Manual: The Offcial Reference Document to OpenGL, version
1.2 © 1999, Addison-Wesley. OpenGL Architecture Review Board.

6.121 AUDIO LIBRARY SOURCES

OpenAL Programming Guide © 2006, Charles River Media. Eric Lenyel.

6.122 MULTIMEDIA LIBRARY SOURCES

Focus on SDL © 2002, Premier Press. Ernest Pazera.
Programming Linux Games – Building Multimedia Applications with

SDL, OpenAL, and Other APIs © 2001. No Starch Press. Loki Games.
John R Hall.

6.123 COMPUTER AIDED DESIGN SOURCES

The Art of 3-D: Computer Animation and Imaging © 2000, John Wiley and Sons.
Isaac V. Kerlow.

The Blender Book © 2000, No Starch Press. Carsten Wartmann.

Glossary 259

6.124 DIGITAL IMAGING SOURCES

Grokking the GIMP © 2000, New Riders. Carey Banks.

6.125 RELATIONAL DATABASE MANAGEMENT SOURCES

MySQL: The Complete Reference © 2003, Osborne McGraw-Hill. Vikram Vaswani.

6.126 ASCII

American Standard Code for Information Interchange. A common character set used
in the US and UK computers.

6.127 SVG FORMAT

Scalable Vector Graphics Format. A data format used to store images in a fle and to
display images on the World Wide Web.

6.128 FBX FORMAT

Film Box Format. A data format used to store 3D models, animations and associated
digital data in a fle and display 3D models and animations in applications, devel-
oped by Autodesk.

6.129 XML FORMAT

Extensible Markup Language Format. A language for describing other languages
that describe structured documents stored in a fle (e.g. a thesis, an article, a User
manual). It was designed to be fexible enough to store and display the huge array of
documents on the World Wide Web. But its fexibility means there can be big differ-
ences in how it is used between any two documents.

6.130 JSON FORMAT

JavaScript Object Notation Format. A data format for describing hierarchical data
structures in a programming language called JavaScript. It was designed to store
documents in a fle and to display documents on the World Wide Web.

6.131 CSV FORMAT

Comma-separated Format. A data format for describing a Relational Database Table
where each row in the table is represented by a line in a fle. And the columns in the
table are represented by words on each line separated by commas. So for example a
4 × 3 Database Table would have each row in the table represented by 3 lines. And
on each line, the entries in each column would be represented by 4 words separated
by 3 commas.

260 Event-Database Architecture for Computer Games

6.132 NEWLINE CHARACTER

An ASCII character which marks the end of a line of text and the beginning of the next.

6.133 ESCAPE CHARACTER

An ASCII character which is reserved for transforming the normal interpretation
of the following character in a word. It is normally used to transform a sequence of
characters into commands which control how text is displayed. But it can be used
to transform a sequence of special ASCII characters (e.g. a Newline character) to
ordinary characters in a word.

6.134 X PIXMAP FORMAT

A data format used to hold images displayed on Graphical User Interfaces of com-
puters that use the X Window System.

6.135 CSV FORMAT SOURCES

UNIX (TM) Relational Database Management © 1997, Pearson Education. Rod
Manis, Evan Schaffer and Robert Jorgensen.

6.136 SVG FORMAT SOURCES

SVG Essentials © 2002, O’Reilly Media. J. David Eisenberg.

6.137 X PIXMAP FORMAT SOURCES

X Pixmap © 2010, Beta Publishing. Lambert M. Surhone.

6.138 DIGITAL AUDIO TAPE

A magnetic tape used to digitally record music or computer data.

6.139 SECURE DIGITAL CARD

A small portable fash memory card or microchip that stores data in a computer
memory, up to 2 gigabytes in size.

6.140 SECURE DIGITAL HIGH DENSITY CARD

A Secure Digital Card that can store up to 64 gigabytes of data in computer memory.

6.141 PULSE CODE MODULATION

A method of encoding an analogue signal in a digital data format. The signal is
sampled at a constant rate, and the amplitude at each interval is converted into a
number within a limited range.

Glossary 261

6.142 DIGITAL RECORDING SOURCES

Desktop Audio Technology © 2003, Focal Press. Francis Rumsey.

6.143 DIGITAL PLAYBACK SOURCES

Modern Recording Techniques © 2001, Focal Press. David Miles Huber and Robert
Runstein.

6.144 DATA DESIGN

A description of all the data needed by a game. It is also a description of all the data
produced by the tools used to build a game.

6.145 TOOLS DESIGN

A description of all the tools used to build a game. These include the tools used to
create the data, to write the computer fles used to build the software, to process the
data or to archive the data and the computer fles.

6.146 GAME WORLD

An imaginary world space in which a game takes place.

6.147 CHECKSUM

A value that represents the total value of a series or sequence of data. That is used
to check when there is an error in that series or sequence when it is transferred from
one computer or storage media to another.

6.148 LOGIC PATH

Any one of a fnite, distinct sequence of actions (or instructions) that can be per-
formed with (or within) a software system (or its software procedures).

6.149 USER MANUAL

An instruction booklet, for software users, which explains how to solve a problem
using the software. In computer games, this includes a description of the problem (i.e.
the background and goal of the game) and a description of how to use the Interface
of the game to solve the problem.

6.150 EXPENDITURE ON DESIGN

An analysis of the relationship between expenditure on design tools and com-
petitiveness of Integrated Circuit companies, conducted by the Electronic Design

262 Event-Database Architecture for Computer Games

FIGURE 6.4 A table showing the relationship between expenditure on design tools and
the competitiveness of companies that use those tools. (Source: Analysis of the relationship
between EDA expenditures and competitive positioning of IC vendors, a custom study for
EDA consortium © 2002, International Business Strategies Inc. Jordan Brysk.)

Automation Consortium (EDAC), showed that there was a strong link between the
investment in design and a company’s future market position (Figure 6.4).

EDA EXPENDITURES AND MARKET POSITIONS OF SELECTED
IC VENDORS.

…In general, there is a strong correlation between the importance placed on
design implementation capabilities and market position. The IC vendors that
placed minimal emphasis on design capabilities in 1995 are not strong in their
targeted market areas in 2002, but those that heavily emphasized design capa-
bilities in 1995 have strong market positions in 2002….The analysis of the IC
industry indicates that several IC vendors tend to adhere to the same strategies
throughout several years, even when it is evident that the strategies have not
brought success….

6.151 DRAFTERS

A profession which prepares technical drawings and plans used by production and
construction workers. These drawings are used to build everything from manufac-
tured products (e.g. toys) to structures (e.g. an offce building).

Drafters held about 213,000 jobs in 2000. More than 40 percent of drafters worked
in engineering and architectural services frms that design construction projects
or do other engineering work on a contract basis for organizations in other indus-
tries. Another 29 percent worked in durable goods manufacturing industries, such as
machinery, electrical equipment, and fabricated metals. The remainder were mostly
employed in the construction; government; transportation, communications, and
utilities; and personnel supply services industries. About 10,000 were self-employed
in 2000.

Source: Occupational Outlook Handbook 2002-03 Edition © 2002,
The Bureau of Labor Statistics, U.S. Department of Labor

Glossary 263

6.152 COMPUTER AIDED DESIGN (SOFTWARE)

Computer software used to design and simulate physical tests of products which
require expensive raw materials before these are physically manufactured, such as
buildings, cars and electronic circuits.

6.153 QUALITY CONTROL

A system that accepts or rejects products or services depending on whether these
meet all of the customer’s specifcations and requirements.

6.154 QUALITY ASSURANCE

In theory, a system which ensures that a company’s processes (as opposed to
their product) will meet all of the customer’s requirements and specifcations. In
practice, software companies just apply two Quality Controls in the latter stages
of production, known as Alpha testing and Beta testing, and call this Quality
Assurance or QA.

Ensuring that a process would meet a set of requirements implies that the process,
as well as its product, would have to be designed. This way you could use the design
to test each step of the process, to check that each produces the right result for the
next step.

QUALITY ASSURANCE

This is similar to quality control, but has more to do with the process than the product.
These are the systems that can demonstrate that the organization can meet the speci-
fcations and requirements of the customer. They also allow the management of the
organization to know that the customer’s requirements are being met.

Source: The Language of Quality: a glossary of terms and vocabulary
in plain English. The International Quality Systems Directory © 1999,

The International Organization for Standardization

6.155 SOAK TESTING

A process for testing a new software or hardware system, to reveal errors that only
emerge under extreme conditions. This typically tests the performance of software
when many are using it simultaneously and after it has been used for a very long
time. This implies that the software has at least three qualities.

Firstly, the process should only be applied to software which could have multiple
simultaneous users.

Secondly, the process should only be applied to software whose frequency
of use, and duration of use, could be quantifed. So that you could compare
these fgures either to some target or other software which had gone through the
same test.

Thirdly, the process should only be applied to software which either has specifc
targets for its frequency of use and duration of use. Or it has some other existing

264 Event-Database Architecture for Computer Games

software whose performance it could be compared to, under the same test. And you
use the results to determine whether the performance was good or bad.

But in the Computer Games industry, Soak Testing has been abused on games
without these three qualities.

It has been used on games which cannot even have multiple players. It has been
used in games where the frequency of use was not and could not be quantifed. Since
there was no defnition of what constituted the use of the game (be it issuing certain
commands, completing one stage of the game or completing the whole game). In the
context of a Software Evolution Process, with an incomplete game design, all such
constituents lack defnition.

Finally, Soak Testing has almost always been used on a new game, without any
specifc targets for the frequency of its use or duration of its use. Nor has the per-
formance of the new game been compared with the performance of existing games,
under these tests.

What is Soak Testing?
Soak testing (otherwise known as endurance testing, capacity testing, or

longevity testing) involves testing the system to detect performance-related
issues such as stability and response time by requesting the designed load on a
system.

The system is then evaluated to see whether it could perform well under a signif-
cant load for an extended period, thereby measuring its reaction and analyzing its
behavior under sustained use. Soak testing is a type of load testing….

Why Should You Perform a Soak Test?
Soak testing is mainly used to identify and optimize potential problems, such

as memory leaks, resource leaks, or degradation that could happen over time,
to avoid impaired performance or system errors. While stress tests will help the
development team to test the system to its limits, soak testing takes the system to
its limits over a sustained period of use. In other words, soak testing allows the
team to mimic real-world usage, in which the users will constantly need access to
the system.

What are the Common Issues that Soak Testing Detects?

• Memory allocation (memory leaks that fnally lead to a memory crisis or
rounding failures that only display over time).

• Database resource usage (errors when closing the database cursors under
certain conditions that would eventually cause the entire system to come to
a standstill).

• It can also bring about a deterioration in performance, that is, to make sure
that the response time after an extended period is as good as it is when the
test starts.

• Errors when closing connections between tiers of a multilayer system under
certain circumstances that could block some or all of its modules.

• The gradual deterioration in the response time of some tasks as internal
data structures is less organized over an extended test period.

Source: What is Soak Testing? Learn in 5 minutes © 2024. Katalon Inc.

Glossary 265

6.156 WATCH YOUR CHARACTER, IT BECOMES YOUR DESTINY

Quotation from Frank Outlaw. The full quote reads:

‘Watch your thoughts, they become words.

Watch your words, they become actions.

Watch your actions, they become habits.

Watch your habits, they become character.

Watch your character, it becomes your destiny.’

6.157 QUALITY

The characteristic of a product which meets a customer’s needs.

The totality of features and characteristics of a product or service that bear on its
ability to satisfy stated or implied needs. Not to be mistaken for “degree of excellence”
or “ftness for use” which meet only part of the defnition.

[ISO8402].

Source: Quality. The Free On-line Dictionary of Computing ©
1993-2001, Denis Howe.

6.158 ROLE OF DESIGN

In industries such as Construction and Electronics, the role of design is not just to
describe the plan for making a product, but also to analyse the interaction of the dif-
ferent parts of the plan.

Design - the part of the production cycle where creativity, new ideas, ingenuity and
inspiration come to the fore. This is also where designers try to model the behaviour
of their designs and analyze the complex interactions of millions of constituent parts
in their designs to ensure completeness, correctness and manufacturability of the fnal
product. Why? Because it is impossibly diffcult, expensive and time consuming to
“build it frst and fx it later.”

Source: EDA Industry summary © 1998-2002, The Electronic
Design Automation Consortium

https://taylorandfrancis.com

267

C

Index
2D Camera List, 60
2D Camera Object ID, 59
2D Camera Object Record, 59
2D Player Object Records, 71
2D Player Objects, 71
2D Polygon ID, 56
2D Polygon Record, 57

3D Camera List, 60
3D Camera Object ID, 59
3D Camera Object Record, 59
3D Model ID, 56
3D Model Record, 57
3D Player Object Records, 71
3D Player Objects, 71

A

Absents List Record, 50
Actions, 38
Analogue History Field, 71
Analogue Positions Field, 72
Artifcial Intelligence, 150, 184, 193

B

Bug Database, 30, 31, 36, 202, 203, 238–242

Camera List Record, 60
Camera Object, 56
Central Host, 42
Client Server Network Architecture, 86
Controller Central Field, 71
Controller Maximum Field, 71
Controller Minimum Field, 71
Controller Type Field, 71

D

Data Design, 99–102, 128, 142, 153, 156, 160,
182, 184, 188

Database, 15, 30, 31, 36, 38–41, 47–51, 81–85,
247, 248

designing, 121
errors, 146–148
open data format, 138
research, 132
single line of inquiry, 104
tools, 137

Database Administrator, 39, 41, 153, 249
data design, 184
role in production process, 83, 84, 98–101, 103

Database Checksum Records, 148
Database Host, 42
Database Host Query Custom Tool, 187
Database Log Record, 47
Database Meta Data Records, 147
Database Monitor Record, 47
Database Tag Records, 93
Degenerative language, 15, 16, 40, 127, 182,

204, 250
Delayed 2D Physics List Record, 149
Delayed 3D Physics List Record, 149
Delayed Events List Record, 46
Depth Coordinate, 58
Device Group Field, 71
Device Group Record, 71
Device Mapping Field, 71
Device Sequence Primary Events Record, 76
Digital History Field, 72
Digital Positions Field, 72
Distributed, 85–87

client server form, 86
peer to peer form, 91

E

Error Record, 78
Event-Database Architecture, 38
Event-Database Production Process, 38
Events, 38
Events History Record, 43
Events Host, 42
External Events Host Custom Tool, 187

G

Game Clients, 87
Game Controller Object Field, 122
Game Controllers Host, 42
Game Database, 38
Game Object Attributes, 52
Game Object Code Field, 52
Game Object Records, 51
Game Objects, 38
Game Peer, 91
Game Server, 87
Game Time Record, 79
Graphic Object ID, 56
Graphics Host, 42

268 Index

Graphics List Record, 57
Graphics Object, 56
Graphics Object Record, 56

H

Hierarchical Database, 123–127
circular references, 131, 132
comparison with relational database,

121–127, 130
hierarchical models, 138, 139, 189, 252, 259

Host Modules, 42

I

Initial Reset Event Record, 46

L

List ID, 57
Loaded, 131

M

Master Physics Object, 65
Master Physics Object Record, 65
Master Player Object, 74
Master Player Object Record, 75
Master Sound Speaker Object, 69
Master Sound Speaker Object Record, 69
Microphone Offset X Field, 68
Microphone Offset Y Field, 68
Microphone Offset Z Field, 68
Multi-User Distributed Form, 85
Multiplayer, 19, 43

network messages data structures,
123–128, 130

N

Natural Language, 12, 15, 182, 228

O

Object ID, 52
Objects Failed List Record, 53
Objects Failed Times List Record, 53
Objects Host, 42
Objects List Record, 51
Objects Loaded Table, 148

P

Peer To Peer Network Architecture, 86
Physics Host, 42
Physics List Record, 64
Physics Object Record, 64

Primary Collision Event, 44
Primary Collision Event Record, 110
Primary Connect Event, 44
Primary Connect Event Record, 76
Primary Controller Moved Event, 44
Primary Controller Moved Event Record, 76
Primary Controller Pressed Event, 44
Primary Controller Pressed Event Record, 76
Primary Controller Released Event, 44
Primary Controller Released Event Record, 76
Primary Controller Stopped Event, 44
Primary Controller Stopped Event Record, 76
Primary Disconnect Event, 44
Primary Disconnect Event Record, 76
Primary End Event, 44
Primary Event Record, 46
Primary Events, 42
Primary Initial Reset Event, 44
Primary Projection Event, 44
Primary Proximity Event, 44
Primary Proximity Event Record, 64
Primary Shutdown Event, 44
Priority End Events Record, 67
Priority Events List Record, 47
Projected List, 58
Projected List Records, 58
Projected Shapes, 58
Projected Shapes Records, 58
Projection ID, 58
Projection Target Field, 59

Q

Quality Control, 105, 199, 201, 205, 263

R

Random Seed, 92
Relational Database, 38, 41, 95, 97, 248,

basic set theory, 122
comparison with hierarchical database, 130
data design, 184
entity-relationship diagram, 188, 256
network messages data structures, 127
software libraries, 135

Relational Database Management System or
RDBMS, 95, 97, 99, 100, 105, 135,
138, 139, 141, 189, 190, 248, 255,
259, 260

Residents List Record, 49

S

Saved, 227
Secondary Connect Event, 45
Secondary Connect Event Record, 76
Secondary Controller Moved Event, 45

Index 269

Secondary Controller Moved Event Record, 76
Secondary Controller Pressed Event, 45
Secondary Controller Pressed Event Record, 76
Secondary Controller Released Event, 45
Secondary Controller Released Event Record, 76
Secondary Controller Stopped Event, 45
Secondary Controller Stopped Event Record, 76
Secondary Disconnect Event, 45
Secondary Disconnect Event Record, 76
Secondary End Event, 67
Secondary Event Record, 46
Secondary Events, 42
Shutdown Event Record, 46
Single player, 85, 88, 89
Single User Monolithic Form, 85
Single User Multi-threaded Form, 85
Stage Object List Record, 148
Software Architecture, 37, 38, 41, 52, 105, 188,

247, 255, 257
Sound Microphone ID, 68
Sound Microphone Object, 65

Sound Microphone Object Record, 68
Sound Object Field, 122
Sound Radius, 67
Sound Speaker Object, 67
Sound Speaker Secondary Events Record, 69
Sound Stream ID, 65
Sound Stream Records, 65
Sounds Host, 42
Sounds Played List Record, 65
Sounds Waiting List Record, 65

T

Testing, 1, 6, 10, 26, 27, 30, 31, 34, 35, 113, 145,
150, 152, 153, 156, 159, 200–202, 205,
206, 207, 210, 221, 224, 241, 242, 244,
263, 264

Texture Coordinate ID, 56
Texture Coordinate Record, 57
Texture ID, 56
Texture Record, 57

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	About the Author
	Introduction
	Chapter 1: The Problem
	1.1. The Software Evolution Process
	1.2. The Effect on Software
	1.3. The Effect on Language
	1.4. The Effect on Credibility
	1.5. The Use of NDAs to Give the Process Credibility
	1.6. The Use of Secrecy and Mystery to Give the Process Credibility
	1.7. The Use of Inscrutability to Give the Process Credibility
	1.8. The Mythical Man Month
	1.9. The Use of the Promise of Rapid Feedback to give the Process Credibility
	1.10. The Decline and Fall of Credibility
	1.11. The Post Mortem

	Chapter 2: The Solution
	Chapter 3: The Software Architecture
	3.1. Events Host
	3.2. Database Host
	3.3. Objects Host
	3.4. Graphics Host
	3.5. Physics Host
	3.6. Sounds Host
	3.7. Game Controllers Host
	3.8. Central Host
	3.9. The Network of the Architecture
	3.9.1. Single User Monolithic Form
	3.9.2. Multi-User Distributed Client Server Form
	3.9.3. Multi-User Distributed Peer To Peer Form

	Chapter 4: The Software Production Process
	4.1. Step 1: Feasibility Study/Vertical Slice
	4.1.1. Designing the Test
	4.1.2. Designing the Software
	4.1.3. Designing the Database
	4.1.4. Background Research
	4.1.5. Documentation Tools
	4.1.6. Programming Tools
	4.1.7. Software Libraries
	4.1.8. Art Tools
	4.1.9. Database Tools
	4.1.10. Open Data Format
	4.1.11. Sound Tools
	4.1.12. Running the Test
	4.1.13. Prognosis from the Test

	4.2. Step 2: Game Design
	4.3. Step 3: Technical Design
	4.3.1. Rules for Generating the System of Events
	4.3.2. Rules for Generating the System of Game Objects
	4.3.3. Application: Testing
	4.3.4. Application: Game Play – Escaping a Prison
	4.3.5. Application: Game Play – Picking a Rose Bush

	4.4. Step 4: Data Design
	4.5. Step 5: Tools Design

	Chapter 5: Limitations or Criteria for Use
	5.1. Complete Game Design Criterion
	5.2. Incomplete Game Design Criterion
	5.3. Complete Data Design Criterion
	5.4. Incomplete Data Design Criterion

	Chapter 6: Glossary
	Index

